江苏省连云港灌云县联考2023-2024学年数学八上期末统考模拟试题含解析_第1页
江苏省连云港灌云县联考2023-2024学年数学八上期末统考模拟试题含解析_第2页
江苏省连云港灌云县联考2023-2024学年数学八上期末统考模拟试题含解析_第3页
江苏省连云港灌云县联考2023-2024学年数学八上期末统考模拟试题含解析_第4页
江苏省连云港灌云县联考2023-2024学年数学八上期末统考模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江苏省连云港灌云县联考2023-2024学年数学八上期末统考模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.下列图形是中心对称图形的是()A. B.C. D.2.估计的值在()A.2和3之间 B.3和4之间 C.4和5之间 D.5和6之间3.的整数部分是,小数部分是,则的值是()A.7 B.1 C. D.104.如果是完全平方式,则的值是()A. B.±1 C. D.1.5.下列图形具有稳定性的是()A. B.C. D.6.两千多年前,古希腊数学家欧几里得首次运用某种数学思想整理了几何知识,完成了数学著作《原本》,欧几里得首次运用的这种数学思想是()A.公理化思想 B.数形结合思想 C.抽象思想 D.模型思想7.对于实数a、b定义一种运算“※”,规定a※b=,如1※3=,则方程※(﹣2)=的解是()A. B. C. D.8.下列分式不是最简分式的是()A. B. C. D.9.某次列车平均提速vkm/h,用相同的时间,列车提速前行驶50km,提速后比提速前多行驶skm.设提速前列车的平均速度为xkm/h,则列方程是()A. B.C. D.10.长度为下列三个数据的三条线段,能组成直角三角形的是()A.1,2,3 B.3,5,7 C.1,,3 D.1,,11.某家具生产厂生产某种配套桌椅(一张桌子,两把椅子),已知每块板材可制作桌子1张或椅子4把,现计划用120块这种板材生产一批桌椅(不考虑板材的损耗),设用x块板材做桌子,用y块板材做椅子,则下列方程组正确的是()A. B. C. D.12.下列图案中,是轴对称图形的是()A. B. C. D.二、填空题(每题4分,共24分)13.如图,将一副直角三角板,按如图所示叠放在一起,则图中∠COB=____.14.计算(10xy2﹣15x2y)÷5xy的结果是_____.15.如图,长方形ABCD中AB=2,BC=4,正方形AEFG的边长为1.正方形AEFG绕点A旋转的过程中,线段CF的长的最小值为_____.16.8的立方根为_______.17.在Rt△ABC中,∠C=90°,若BC=10,AD平分∠BAC交BC于点D,且BD:CD=3:2,则点D到线段AB的距离为_________.18.如图所示,是将长方形纸牌ABCD沿着BD折叠得到的,若AB=4,BC=6,则OD的长为_____.三、解答题(共78分)19.(8分)先阅读后作答:我们已经知道.根据几何图形的面积可以说明完全平方公式,实际上还有一些等式也是可以用这种公式加以说明.例如勾股定理a2+b2=c2就可以用如图的面积关系来说明.(1)根据图2写出一个等式:;(2)已知等式,请你画出一个相应的几何图形加以说明.20.(8分)(1)如图1,在△ABC中,∠ABC的平分线BF交AC于F,过点F作DF∥BC,求证:BD=DF.(2)如图2,在△ABC中,∠ABC的平分线BF与∠ACB的平分线CF相交于F,过点F作DE∥BC,交直线AB于点D,交直线AC于点E.那么BD,CE,DE之间存在什么关系?并证明这种关系.(3)如图3,在△ABC中,∠ABC的平分线BF与∠ACB的外角平分线CF相交于F,过点F作DE∥BC,交直线AB于点D,交直线AC于点E.那么BD,CE,DE之间存在什么关系?请写出你的猜想.(不需证明)21.(8分)(1)先化简,再求值:,其中;(2)解分式方程:.22.(10分)如图,在网格中,每个小正方形的边长都为.(1)建立如图所示的平面直角坐标系,若点,则点的坐标_______________;(2)将向左平移个单位,向上平移个单位,则点的坐标变为_____________;(3)若将的三个顶点的横纵坐标都乘以,请画出;(4)图中格点的面积是_________________;(5)在轴上找一点,使得最小,请画出点的位置,并直接写出的最小值是______________.23.(10分)如图,平行四边形的对角线与相交于点,点为的中点,连接并延长交的延长线于点,连接.(1)求证:;(2)当,时,请判断四边形的形状,并证明你的结论.(3)当四边形是正方形时,请判断的形状,并证明你的结论.24.(10分)计算:(1)()+()(2)25.(12分)已知:点Q的坐标(2-2a,a+8).(1)若点Q到y轴的距离为2,求点Q的坐标.(2)若点Q到两坐标轴的距离相等,求点Q的坐标.26.已知A、B两点在直线的同侧,试在上找两点C和D(CD的长度为定值),使得AC+CD+DB最短(保留作图痕迹,不要求写画法).

参考答案一、选择题(每题4分,共48分)1、B【分析】根据轴对称图形与中心对称图形的概念求解即可.【详解】解:A、不是中心对称图形,不符合题意,故选项A错误;B、是中心对称图形,符合题意,故选项B正确;C、不是中心对称图形,不符合题意,故选项C错误;D、不是中心对称图形,符合题意,故选项D错误;故选B.【点睛】本题主要考查了中心对称图形的概念,掌握中心对称图形的概念是解题的关键.2、D【详解】解:∵25<33<31,∴5<<1.故选D.【点睛】此题主要考查了无理数的估算,现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.3、B【分析】由的整数部分是,小数部分是,即可得出x、y的值,然后代入求值即可.【详解】解:∵,∴的整数部分,小数部分,∴.故选:B.【点睛】本题主要考查实数,关键是运用求一个平方根的整数部分和小数部分的方法得出未知数的值,然后代入求值即可.4、B【分析】根据完全平方公式:,即可求出k的值.【详解】解:∵是完全平方式,∴∴k=±1故选B.【点睛】此题考查的是根据完全平方式,求一次项中的参数,掌握两个完全平方公式的特征是解决此题的关键.5、A【分析】根据三角形具有稳定性,四边形具有不稳定性进行判断.【详解】解:三角形具有稳定性.

故选:A.【点睛】本题考查了三角形的稳定性和四边形的不稳定性.6、A【分析】根据欧几里得和《原本》的分析,即可得到答案.【详解】解:∵《原本》是公理化思想方法的一个雏形。∴欧几里得首次运用的这种数学思想是公理化思想;故选:A.【点睛】本题考查了公理化思想来源,解题的关键是对公理化思想的认识.7、C【分析】根据定义新运算公式列出分式方程,然后解分式方程即可.【详解】解:∵※(﹣2)=∴解得:x=6经检验:x=6是原方程的解故选C.【点睛】此题考查的是定义新运算和解分式方程,掌握定义新运算公式和解分式方程的一般步骤是解决此题的关键.8、B【分析】根据最简分式的概念即可得出答案.【详解】解:A、无法再化简,所以是最简分式,故A选项错误;B、,所以不是最简分式,故B选项正确;C、无法再化简,所以是最简分式,故C选项错误;D、无法再化简,所以是最简分式,故D选项错误故答案为:B.【点睛】本题考查最简分式的概念,熟记最简分式的概念是解题的关键.9、C【分析】设提速前列车的平均速度为xkm/h,则提速后速度为(x+v)km/h,根据题意可得等量关系:提速前行驶50km所用时间=提速后行驶(s+50)km所用时间,根据等量关系列出方程即可.【详解】解:设提速前列车的平均速度为xkm/h,则提速后速度为(x+v)km/h,由题意得:,故选:C.【点睛】此题主要考查了由实际问题抽象出分式方程,关键是正确理解题意,找出题目中的等量关系.10、D【分析】根据勾股定理的逆定理逐项判断即可.【详解】由直角三角形的性质知,三边中的最长边为斜边A、,不满足勾股定理的逆定理,此项不符题意B、,不满足勾股定理的逆定理,此项不符题意C、,不满足勾股定理的逆定理,此项不符题意D、,满足勾股定理的逆定理,此项符合题意故选:D.【点睛】本题考查了勾股定理的逆定理的应用,熟记勾股定理的逆定理是解题关键.11、D【分析】设用x块板材做桌子,用y块板材做椅子,根据“用120块这种板材生产一批桌椅”,即可列出一个二元一次方程,根据“每块板材可做桌子1张或椅子4把,使得恰好配套,一张桌子两把椅子”,列出另一个二元一次方程,即可得到答案.【详解】设用x块板材做桌子,用y块板材做椅子,∵用100块这种板材生产一批桌椅,∴x+y=120①,生产了x张桌子,4y把椅子,∵使得恰好配套,1张桌子4把椅子,∴2x=4y②,①和②联立得:,故选:D.【点睛】本题考查了由实际问题抽象出二元一次方程组,正确找出等量关系,列出二元一次方程组是解题的关键.12、D【分析】根据轴对称图形的定义逐项判断即得答案.【详解】解:A、不是轴对称图形,本选项不符合题意;B、不是轴对称图形,本选项不符合题意;C、不是轴对称图形,本选项不符合题意;D、是轴对称图形,本选项符合题意.故选:D.【点睛】本题考查的是轴对称图形的概念,属于基础概念题型,熟知轴对称图形的定义是关键.二、填空题(每题4分,共24分)13、105°.【分析】先根据直角三角形的特殊角可知:∠ECD=45°,∠BDC=60°,再根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【详解】如图,∠ECD=45°,∠BDC=60°,∴∠COB=∠ECD+∠BDC=45°+60°=105°.故答案为:105°.【点睛】此题考查三角形外角的性质,掌握三角形的一个外角等于与它不相邻的两个内角的和的性质是解题的关键.14、2y﹣3x【分析】多项式除以单项式,多项式的每一项除以该单项式,然后运用同底数幂相除,底数不变,指数相减可得.【详解】解:(10xy2﹣15x2y)÷5xy=2y﹣3x.故答案为:2y﹣3x.【点睛】掌握整式的除法为本题的关键.15、2﹣【分析】连接AF,CF,AC,利用勾股定理求出AC、AF,再根据三角形的三边关系得到当点A,F,C在同一直线上时,CF的长最小,最小值为2﹣.【详解】解:如图,连接AF,CF,AC,∵长方形ABCD中AB=2,BC=4,正方形AEFG的边长为1,∴AC=2,AF=,∵AF+CF≥AC,∴CF≥AC﹣AF,∴当点A,F,C在同一直线上时,CF的长最小,最小值为2﹣,故答案为:2﹣.【点睛】此题考查矩形的性质,正方形的性质,勾股定理,三角形的三边关系.16、2.【详解】根据立方根的定义可得8的立方根为2.【点睛】本题考查了立方根.17、1.【解析】试题分析:根据比例求出CD的长度,然后根据角平分线上的点到角的两边的距离相等解答.试题解析:∵BC=10,BD:CD=3:2,∴CD=10×=1,过点D作DE⊥AB于点E,∵AD平分∠BAC,且∠C=90°,∴DE=CD=1,∴点D到线段AB的距离为1.考点:角平分线的性质.18、【分析】设AO=x,则BO=DO=6﹣x,在直角△ABO中利用勾股定理即可列方程求得x的值,则可求出OD的长.【详解】解:∵△BDC′是将长方形纸牌ABCD沿着BD折叠得到的,∴∠C'BD=∠CBD,∵长方形ABCD中,AD∥BC,∴∠ODB=∠CBD,∴∠ODB=∠C'BD,∴BO=DO,设AO=x,则BO=DO=6﹣x,在直角△ABO中,AB2+AO2=BO2,即42+x2=(6﹣x)2,解得:x=,则AO=,∴OD=6﹣=,故答案为:.【点睛】本题考查直角三角形轴对称变换及勾股定理和方程思想方法的综合应用,熟练掌握直角三角形轴对称变换的性质及方程思想方法的应用是解题关键.三、解答题(共78分)19、(1);(2)见解析【分析】(1)根据图2中大正方形的面积的两种算法,写出等式即可;

(2)根据已知等式得出相应的图形即可.【详解】(1)根据图2得:;

故答案为:;(2)等式可以用以下图形面积关系说明:大长方形的面积可以表示为:长宽,大长方形的面积也可以表示为:一个正方形的面积+1个小长方形的面积-2个小长方形的面积,∴.【点睛】本题考查了多项式乘多项式,正确利用图形结合面积求出是解题关键.20、(1)见详解;(2)BD+CE=DE,证明过程见详解;(3)BD﹣CE=DE,证明过程见详解【分析】(1)根据平行线的性质和角平分线定义得出∠DFB=∠CBF,∠ABF=∠CBF,推出∠DFB=∠DBF,根据等角对等边推出即可;(2)与(1)证明过程类似,求出BD=DF,EF=CE,即可得出结论;(3)与(1)证明过程类似,求出BD=DF,EF=CE,即可得出结论.【详解】解:(1)∵BF平分∠ABC,∴∠ABF=∠CBF,∵DF∥BC,∴∠DFB=∠CBF,∴∠DFB=∠DBF,∴BD=DF;(2)BD+CE=DE,理由是:∵BF平分∠ABC,∴∠ABF=∠CBF,∵DF∥BC,∴∠DFB=∠CBF,∴∠DFB=∠DBF,∴BD=DF;同理可证:CE=EF,∵DE=DF+EF,∴BD+CE=DE;(3)BD﹣CE=DE.理由是:∵BF平分∠ABC,∴∠ABF=∠CBF,∵DF∥BC,∴∠DFB=∠CBF,∴∠DFB=∠DBF,∴BD=DF;同理可证:CE=EF,∵DE=DF﹣EF,∴BD﹣CE=DE.【点睛】本题考查了角平分线定义,平行线的性质,等腰三角形的判定等知识点,本题具有一定的代表性,三个问题证明过程类似.21、(1),;(2)【分析】(1)先进行化简,然后将a的值代入求解;(2)根据分式方程的解法求解.【详解】(1)原式=====当时,原式=(2)原方程可化为:方程两边乘得:检验:当时,所以原方程的解是【点睛】本题考查了分式的化简求值、解分式方程等运算,掌握运算法则是解答本题的关键.22、(1);(2);(3)见解析;(4)5;(5)【分析】(1)根据第一象限点的坐标特征写出C点坐标;

(2)利用点平移的坐标变换规律求解;

(3)将△AOC的三个顶点的横纵坐标都乘以-得到A1、C1的坐标,然后描点即可;

(4)用一个矩形的面积分别减去三个三角形的面积去计算△AOC的面积;

(5)作C点关于x轴的对称点C′,然后计算AC′即可.【详解】解:(1)如图,点的坐标;(2)将向左平移个单位,向上平移个单位,则点的坐标变为;(3)如图,为所作;(4)图中格点的面积;(5)如图,作C关于x轴的对待点C’,连接C’A交x轴于点P,点即为所求作的点,的最小值.故答案为(1);(2);(4);(5).【点睛】本题考查了作图-平移变换及轴对称变换:确定平移后图形的基本要素有两个:平移方向、平移距离.作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.也考查了最短路径问题.23、(1)见解析;(2)平行四边形ABDF是矩形,见解理由析;(3)△FBC为等腰直角三角形,证明见解析【分析】(1)利用平行四边形的性质,证明AB=CD,然后通过证明△AGB≌△DGF得出AB=DF即可解决问题;

(2)结论:四边形ABDF是矩形.先证明四边形ABDF是平行四边形,再根据对角线相等的平行四边形是矩形判断即可;(3)结论:△FBC为等腰直角三角形.由正方形的性质得出∠BFD=45°,∠FGD=90°,根据平行四边形的性质推出BF=BC即可解决问题.【详解】(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∴∠FDG=∠BAG,∵点G是AD的中点,∴AG=DG,又∵∠FGD=∠BGA,∴△AGB≌△DGF(ASA),∴AB=DF,∴DF=DC.(2)结论:四边形ABDF是矩形,理由:∵△AGB≌△DGF,∴GF=GB,又∵DG=AG,∴四边形ABDF是平行四边形,∵DG=DC,DC=DF,∴DF=DG,在平行四边形ABCD中,∵∠ABC=120°,∴∠ADC=120°,∴∠FDG=60°,∴△FDG为等边三角形,∴FG=DG,∴AD=BF,∴四边形ABDF是矩形.(3)当四边形ABDF是正方形时,△FBC为等腰直角三角形.证明:∵四边形ABDF是正方形,∴∠BFD=45°,∠FGD=90°,∵四边形ABCD是平行四边形,∴AD∥BC,∴∠FBC=∠FGD=90°,∴∠FCB=45°=∠BFD,∴BF=BC,∴△FBC为等腰直角三角形.【

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论