




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
吉林省吉林市吉化九中学2023年数学八上期末复习检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.小数0.0…0314用科学记数法表示为,则原数中小数点后“0”的个数为()A.4 B.6 C.7 D.82.﹣2的绝对值是()A.2 B. C. D.3.如图,在中,,是的中点,是上任意一点,连接、并延长分别交、于点、,则图中的全等三角形共有()A.对 B.对 C.对 D.对4.计算的结果,与下列哪一个式子相同?()A. B. C. D.5.如图,在方形网格中,与有一条公共边且全等(不与重合)的格点三角形(顶点在格点上的三角形)共有()A.3个 B.4个 C.5个 D.6个6.如图,,,,是数轴上的四个点,其中最适合表示无理数的点是()A.点 B..点 C.点 D.点7.计算,结果用科学记数法表示正确的是()A. B. C. D.8.如果三角形的一个外角小于与它相邻的内角,那么这个三角形一定是()A.锐角三角形 B.直角三角形 C.钝角三角形 D.任意三角形9.已知点A和点B,以点A和点B为两个顶点作等腰直角三角形,则一共可作出()A.3个 B.4个 C.6个 D.7个10.如图,以△ABC的顶点B为圆心,BA长为半径画弧,交BC边于点D,连接AD.若∠B=40°,∠C=36°,则∠DAC的大小为()A.30° B.34° C.36° D.40°11.如图,在△ABC中,AB=20cm,AC=12cm,点P从点B出发以每秒3cm速度向点A运动,点Q从点A同时出发以每秒2cm速度向点C运动,其中一个动点到达端点,另一个动点也随之停止,当△APQ是以PQ为底的等腰三角形时,运动的时间是()秒A.2.5 B.3 C.3.5 D.412.如图,在△ABC中,AB的垂直平分线交AB于点D,交BC于点E,若BC=6,AC=5,则△ACE的周长为()A.8 B.11 C.16 D.17二、填空题(每题4分,共24分)13.点关于轴的对称点的坐标为______.14.若分式有意义,则的取值范围是__________.15.一个多边形的内角和是1980°,则这个多边形的边数是__________.16.如图,在Rt△ABC中,∠C=90°.点O是AB的中点,边AC=6,将边长足够大的三角板的直角顶点放在点O处,将三角板绕点0旋转,始终保持三角板的直角边与AC相交,交点为点E,另条直角边与BC相交,交点为D,则等腰直角三角板的直角边被三角板覆盖部分的两条线段CD与CE的长度之和为_____.17.如图,在中,,平分交于点,交的延长线于点,已知,则的度数为____________.18.若+(b+2)2=0,则点M(a,b)关于y轴的对称点的坐标为_________.三、解答题(共78分)19.(8分)已知为等边三角形,在的延长线上,为线段上的一点,.(1)如图,求证:;(2)如图,过点作于点,交于点,当时,在不添加任何辅助线的情况下,直接写出图中所有的等腰三角形.20.(8分)已知,在平面直角坐标系中,、,m、n满足.C为AB的中点,P是线段AB上一动点,D是x轴正半轴上一点,且PO=PD,DE⊥AB于E.(1)如图1,当点P在线段AB上运动时,点D恰在线段OA上,则PE与AB的数量关系为.(2)如图2,当点D在点A右侧时,(1)中结论是否成立?若成立,写出证明过程;若不成立,说明理由.(3)设AB=5,若∠OPD=45°,直接写出点D的坐标.21.(8分)如图,过点A(2,0)的两条直线,分别交y轴于B,C,其中点B在原点上方,点C在原点下方,已知AB=.(1)求点B的坐标;(2)若△ABC的面积为4,求的解析式.22.(10分)计算下列各式:(x﹣1)(x+1)=;(x﹣1)(x2+x+1)=;(x﹣1)(x3+x2+x+1)=;…(1)根据以上规律,直接写出下式的结果:(x﹣1)(x6+x5+x4+x3+x2+x+1)=;(2)你能否由此归纳出一般性的结论(x﹣1)(xn﹣1+xn﹣2+xn﹣3+…+x+1)=(其中n为正整数);(3)根据(2)的结论写出1+2+22+23+24+…+235的结果.23.(10分)如图,在中,,平分交于点,,,与交于点,交于点.(1)若,求的度数.(2)求证:.24.(10分)计算(1)(2)25.(12分)某市为了鼓励居民在枯水期(当年11月至第二年5月)节约用电,规定7:00至23:00为用电高峰期,此期间用电电费y1(单位:元)与用电量x(单位:度)之间满足的关系如图所示;规定23:00至第二天早上7:00为用电低谷期,此期间用电电费y2(单位:元)与用电量x(单位:元)之间满足如表所示的一次函数关系.(1)求y2与x的函数关系式;并直接写出当0≤x≤180和x>180时,y1与x的函数关系式;(2)若市民王先生一家在12月份共用电350度,支付电费150元,求王先生一家在高峰期和低谷期各用电多少度.低谷期用电量x度…80100140…低谷期用电电费y2元…202535…26.如图,在平面直角坐标系中有一个,顶点,,.(1)画出关于y轴的对称图形(不写画法);(2)点关于轴对称的点的坐标为__________,点关于轴对称的点的坐标为__________;(3)若网格上每个小正方形的边长为1,求的面积?
参考答案一、选择题(每题4分,共48分)1、C【分析】科学记数法的标准形式为a×10n(1≤|a|<10,n为整数).本题数据“”中的a=3.14,指数n等于−8,所以,需要把3.14的小数点向左移动8位,就得到原数,即可求解.【详解】解:3.14×10−8=0.1.原数中小数点后“0”的个数为7,故答案为:C.【点睛】本题考查写出用科学记数法表示的原数.将科学记数法a×10n表示的数,“还原”成通常表示的数,当n>0时,就是把a的小数点向右移动n位所得到的数,当n<0时,就是把a的小数点向左移动位所得到的数.2、A【解析】分析:根据数轴上某个数与原点的距离叫做这个数的绝对值的定义,在数轴上,点﹣2到原点的距离是2,所以﹣2的绝对值是2,故选A.3、A【分析】根据等腰三角形的性质,全等三角形的判断及性质可知有以下7对三角形全等:△ABD≌△ACD、△ABP≌△ACP、△ABE≌△ACF、△APF≌△APE、△PBD≌△PCD、△BPF≌△CPE、△BCF≌△CBE.【详解】①∵,是的中点,由等腰三角形三线合一可知:,,∴②由,,,∴③由②可知,,∵,,,∴④由③可知,,∵,,∴⑤由①可知,,,又∵,∴⑥由③⑤可知,,,∴,又∵,⑦由⑤可知,由⑥可知,又∵∴∴共7对全等三角形,故选A.【点睛】本题主要考查等腰三角形的性质,全等三角形的性质及判定,熟练掌握全等三角形的判定定理()是解题的关键.4、D【分析】由多项式乘法运算法则:两多项式相乘时,用一个多项式的各项去乘另一个多项式的每一项,再把所得的积相加,合并同类项后所得的式子就是它们的积.【详解】解:由多项式乘法运算法则得.故选D.【点睛】本题考查多项式乘法运算法则,牢记法则,不要漏项是解答本题的关键.5、B【分析】通过全等三角形的性质作轴对称图形可以分析得到.【详解】以为公共边可以画出两个,以、为公共边可以各画出一个,所以一共四个.故选B【点睛】本题考查了全等三角形的性质,根据方格的特点和全等三角形的性质结合画轴对称图形是解题的关键.6、D【分析】能够估算无理数的范围,结合数轴找到点即可.【详解】因为无理数大于,在数轴上表示大于的点为点;故选D.【点睛】本题考查无理数和数轴的关系;能够准确估算无理数的范围是解题的关键.7、B【分析】把2与5相乘、10-4与10-2相乘,后者根据同底数幂的乘法法则得到10-4-2,然后写成a×10n(1≤a<10,n为整数)的形式即可.【详解】===.故选:B.【点睛】考查了同底数幂的乘法,解题关键利用了:am•an=am+n(其中a≠0,m、n为整数)进行计算.8、C【解析】依据三角形的外角与它相邻的内角互为邻补角,可判断出此三角形有一内角为钝角,从而得出这个三角形是钝角三角形.【详解】解:∵三角形的一个外角与它相邻的内角和为180°,而这个外角小于它相邻的内角,∴与它相邻的这个内角大于90°,∴这个三角形是钝角三角形.故选:C.【点睛】本题考查的是三角形的外角性质,解题的关键是熟练掌握三角形的外角与它相邻的内角互为邻补角.9、C【分析】根据等腰直角三角形的性质,分AB是直角边和斜边两种情况作出图形即可得解.【详解】解:如图,以点A和点B为两个顶点作等腰直角三角形,
一共可作出6个.
故选C.【点睛】本题考查了等腰直角三角形,作出图形,利用数形结合的思想求解更形象直观.10、B【解析】由AB=BD,∠B=40°得到∠ADB=70°,再根据三角形的外角的性质即可得到结论.【详解】解:∵AB=BD,∠B=40°,∴∠ADB=70°,∵∠C=36°,∴∠DAC=∠ADB﹣∠C=34°.故选:B.【点睛】本题考查了等腰三角形的性质,三角形外角的性质,熟练掌握等腰三角形的两个底角相等和三角形的外角等于不相邻两个内角的和是解答本题的关键.11、D【详解】解:设运动的时间为x,在△ABC中,AB=20cm,AC=12cm,点P从点B出发以每秒3cm的速度向点A运动,点Q从点A同时出发以每秒2cm的速度向点C运动,当△APQ是等腰三角形时,AP=AQ,AP=20﹣3x,AQ=2x,即20﹣3x=2x,解得x=1.故选D.【点睛】此题主要考查学生对等腰三角形的性质这一知识点的理解和掌握,此题涉及到动点,有一定的拔高难度,属于中档题.12、B【分析】根据线段垂直平分线的性质得AE=BE,然后利用等量代换即可得到△ACE的周长=AC+BC,再把BC=6,AC=5代入计算即可.【详解】解:∵DE垂直平分AB,
∴AE=BE,
∴△ACE的周长=AC+CE+AE
=AC+CE+BE
=AC+BC
=5+6
=1.
故选B.【点睛】本题考查了线段垂直平分线的性质:垂直平分线垂直且平分其所在线段;垂直平分线上任意一点,到线段两端点的距离相等.二、填空题(每题4分,共24分)13、【分析】关于y轴对称的点,纵坐标相同,横坐标互为相反数.【详解】∵关于y轴对称的点,纵坐标相同,横坐标互为相反数∴点关于y轴的对称点的坐标为.故答案为:【点睛】考核知识点:轴对称与点的坐标.理解轴对称和点的坐标关系是关键.14、【分析】根据分式的概念,分式有意义则分母不为零,由此即得答案.【详解】要使有意义,则,故答案为:.【点睛】考查了分式概念,注意分式有意义则分母不能为零,这是解题的关键内容,需要记住.15、1【分析】根据多边形的内角和公式即可得.【详解】一个多边形的内角和公式为,其中n为多边形的边数,且为正整数则解得故答案为:1.【点睛】本题考查了多边形的内角和公式,熟记公式是解题关键.16、1.【分析】连接OC,证明△OCD≌△OBE,根据全等三角形的性质得到CD=BE即可解决问题;【详解】连接OC.∵AC=BC,AO=BO,∠ACB=90°,∴∠ACO=∠BCO=∠ACB=45°,OC⊥AB,∠A=∠B=45°,∴OC=OB,∵∠BOD+∠EOD+∠AOE=180°,∠EOD=90°,∴∠BOD+∠AOE=90°,又∵∠COE+∠AOE=90°,∴∠BOD=∠COE,在△OCE和△OBD中,,∴△OCE≌△OBD(ASA),∴CE=BD,∴CE+CD=BD+CD=BC═AC=1.故答案为:1.点睛】本题考查旋转变换、等腰直角三角形的性质、全等三角形的判定和性质,掌握全等三角形的判定定理和性质定理是解题的关键.17、【分析】根据等腰三角形的性质和三角形的内角和定理,即可求出∠ACB,再根据角平分线的定义即可求出∠BCD,最后根据平行线的性质即可求出∠E【详解】解:∵,∴∠ABC=∠ACB=(180°-)=74°∵平分∴∠BCD==37°∵∴∠E=∠BCD=37°故答案为:37°.【点睛】此题考查的是等腰三角形的性质、三角形的内角和定理、角平分线的定义和平行线的性质,掌握等边对等角、三角形的内角和定理、角平分线的定义和平行线的性质是解决此题的关键.18、(-3,-2).【解析】试题解析:∵+(b+2)2=0,∴a=3,b=-2;∴点M(a,b)关于y轴的对称点的坐标为(-3,-2).考点:1.关于x轴、y轴对称的点的坐标;2.非负数的性质:偶次方;3.非负数的性质:算术平方根.三、解答题(共78分)19、(1)见解析;(2),,,.【分析】(1)延长至点,使,连接,利用(SAS)证得,得到,证得也是等边三角形,利用等量代换即可证得结论;(2)根据等腰三角形的概念即可解答.【详解】(1)延长至点,使,连接,∵,∴,∵,,∴,∴(SAS),∴,∵是等边三角形,∴,∴是等边三角形,∴,∵,∴,∴,(2)由已知:为等边三角形,以及,∴,是等腰三角形;∵为等边三角形,∴,∵,∴,,∴,∴是等腰三角形,∵,,,,∴,,∴,∴是等腰三角形,综上,,,,是等腰三角形.【点睛】本题考查的是等腰三角形的判定和性质、等边三角形的判定和性质,全等三角形的判定和性质,解题的关键是构造全等三角形,证明线段相等,注意转化思想的运用.20、(1)AB=2PE;(2)成立,理由见解析;(3)点D.【分析】(1)根据非负数的性质分别求出m、n,证明△POC≌△DPE,可得出OC=PE,由AB=2OC,则结论得出;(2)根据等腰直角三角形的性质得到∠AOC=∠BOC=45°,OC⊥AB,证明△POC≌△DPE,根据全等三角形的性质得到OC=PE,可得到答案;(3)证明△POB≌△DPA,得到PA=OB=5,DA=PB,根据坐标与图形性质解答即可.【详解】解:(1)∵(m﹣n)2+|m﹣5|=0,∴m﹣n=0,m﹣5=0,∴m=n=5,∴A(5,0)、B(0,5),∴AC=BC=5,∴△AOB为等腰直角三角形,∴∠AOC=∠BOC=45°,OC⊥AB,∵PO=PD,∴∠POD=∠PDO,∵D是x轴正半轴上一点,∴点P在BC上,∵∠POD=45°+∠POC,∠PDO=45°+∠DPE,∴∠POC=∠DPE,在△POC和△DPE中,,在此处键入公式。∴△POC≌△DPE(AAS),∴OC=PE,∵C为AB的中点,∴AB=2OC,∴AB=2PE.故答案为:AB=2PE.(2)成立,理由如下:∵点C为AB中点,∴∠AOC=∠BOC=45°,OC⊥AB,∵PO=PD,∴∠POD=∠PDO,∵∠POD=45°﹣∠POC,∠PDO=45°﹣∠DPE,∴∠POC=∠DPE,在△POC和△DPE中,,∴△POC≌△DPE(AAS),∴OC=PE,又∠AOC=∠BAO=45°∴OC=AC=AB∴AB=2PE;(3)∵AB=5,∴OA=OB=5,∵OP=PD,∴∠POD=∠PDO==67.5°,∴∠APD=∠PDO﹣∠A=22.5°,∠BOP=90°﹣∠POD=22.5°,∴∠APD=∠BOP,在△POB和△DPA中,,∴△POB≌△DPA(SAS),∴PA=OB=5,DA=PB,∴DA=PB=5﹣5,∴OD=OA﹣DA=5﹣(5﹣5)=10﹣5,∴点D的坐标为.【点睛】本题是一道关于三角形全等的综合题目,涉及到的知识点有非负数的性质,全等三角形的判定定理及其性质,等腰直角三角形的性质,图形与坐标的性质,掌握以上知识点是解此题的关键.21、(1)(0,3);(2).【分析】(1)在Rt△AOB中,由勾股定理得到OB=3,即可得出点B的坐标;(2)由=BC•OA,得到BC=4,进而得到C(0,-1).设的解析式为,把A(2,0),C(0,-1)代入即可得到的解析式.【详解】(1)在Rt△AOB中,∵,∴,∴OB=3,∴点B的坐标是(0,3).(2)∵=BC•OA,∴BC×2=4,∴BC=4,∴C(0,-1).设的解析式为,把A(2,0),C(0,-1)代入得:,∴,∴的解析式为是.考点:一次函数的性质.22、x2﹣1;x3﹣1;x4﹣1;(1)x7﹣1;(2)xn﹣1;(3)236﹣1.【分析】利用多项式乘以多项式法则计算各式即可;(1)根据上述规律写出结果即可;(2)归纳总结得到一般性规律,写出即可;(3)利用得出的规律计算即可得到结果.【详解】(x﹣1)(x+1)=x2﹣1;(x﹣1)(x2+x+1)=x3﹣1;(x﹣1)(x3+x2+x+1)=x4﹣1,(1)(x﹣1)(x6+x5+x4+x3+x2+x+1)=x7﹣1;(2)(x﹣1)(xn﹣1+xn﹣2+xn﹣3+…+x+1)=xn﹣1;(3)1+2+22+23+24+…+235=(2﹣1)(235+234+233+…+2+1)=236﹣1.【点睛】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.23、(1);(2)见解析.【分析】(1)如图,根据等腰三角形的性质和三角形的内角和定理可得∠ABC,根据角平分线的定义可得∠1,根据平行线的性质可得∠2,根据直角三角形的性质可得∠E;(2)由角平分线的定义可得∠1=∠3,根据平行线的性质可得,进而得∠2=∠3,然后根据等角的余角相等即得,进一步即可证得结论.【详解】解:(1)如图,∵AB=AC,,∴,∵BD平分∠ABC,∴,∵DE∥BC,∴,∵,∴;(2)证明:∵BD平分∠ABC,∴∠1=∠3,∵DE∥BC,∴,∴∠2=∠3,∵,∴,∠EBF+∠3=90°,∴,∴.【点睛】本题考查了等腰三角形的性质和判定、角平分线的定义、三角形的内角和定理、平行线的性质、直角三角形的性质和余角的性质等知识,属于常考题型,熟练掌握上述基本知识是解题关键.24、(1);(2)【分析】(1)先根据二次根式、绝对值和负整数指数幂的性质化简,然后再进行计算;(2)先化简各二次根式,然后再进行计算.【详解】解:(1)原式;(2)原式.【点睛】
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 黑龙江省七台河市2025届高三下学期4月份学情检测试题语文试题含解析
- 黑龙江省大庆市2024-2025学年高三下学期六次月考语文试题试卷含解析
- 黑龙江省绥棱一中2025年高三4月教学质量检测试题物理试题试卷含解析
- 黔东南市重点中学2025届下学期开学考试历史试题试卷含解析
- 齐鲁工业大学《影视艺术鉴赏》2023-2024学年第二学期期末试卷
- 中国纺织品数码喷墨印花系统行业发展状况与前景趋势研究报告2025-2030年
- 二零二四年第四季度度轨道交通隧道保温防冻施工质量保障合同
- 2024年份8月闭口合同装修弱电箱扩容配置清单
- 2024年图书管理员考试心理准备指南试题及答案
- 2024年育婴师考试重点分析试题及答案
- 消防设施操作员实战试题及答案分享
- 2025年北京电子科技职业学院高职单招(数学)历年真题考点含答案解析
- 山东省滨州市无棣县2024-2025学年七年级上学期期末生物试题(原卷版+解析版)
- 新东方在国际教育领域的布局与市场机会
- 2025年上半年海口市美兰区水务局下属事业单位招考易考易错模拟试题(共500题)试卷后附参考答案
- 2025届高三化学二轮复习 化学反应原理综合 课件
- 9.3.2《设计简单装置制作酸奶》跨学科实践主题学习单元教学设计
- 2025年郑州市九年级中考语文一模试卷附答案解析
- 2025年江苏苏州市(12345)便民服务中心招聘座席代表人员高频重点模拟试卷提升(共500题附带答案详解)
- 塔类设备绝热保冷施工方案
- 河北省石家庄市栾城区冶河镇初级中学-励志主题班会-拒绝间歇性努力不做45青年【课件】
评论
0/150
提交评论