版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖北省武汉市两学校2023-2024学年数学八上期末质量跟踪监视模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.下列各图中,能表示y是x的函数的是()A. B. C. D.2.化简式子的结果为()A. B. C. D.3.把△ABC各顶点的横坐标都乘以﹣1,纵坐标都不变,所得图形是下列答案中的()A. B.C. D.4.下列运算错误的是()A. B. C. D.5.如图,在△ABC中,AD是高,AE是角平分线,AF是中线,则下列说法中错误的是()A.BF=CF B.∠C+∠CAD=90° C.∠BAF=∠CAF D.6.如图,对一个正方形进行了分割,通过面积恒等,能够验证下列哪个等式()A. B.C. D.7.下列各点在正比例函数的图象上的是()A. B. C. D.8.把一副三角板按如图叠放在一起,则的度数是A. B. C. D.9.若等腰三角形的周长为,其中一边为,则该等腰三角形的底边长为()A. B.或 C.或 D.10.把多项式因式分解,正确的是()A. B. C. D.二、填空题(每小题3分,共24分)11.使函数有意义的自变量的取值范围是_______.12.小明家准备春节前举行80人的聚餐,需要去某餐馆订餐.据了解餐馆有10人坐和8人坐两种餐桌,要使所订的每个餐桌刚好坐满,则订餐方案共有______种.13.分解因式:=_____;14.如图,ΔABC的面积为8cm2,AP垂直∠B的平分线BP于P,则ΔPBC的面积为________.15.若分式的值为0,则实数的值为_________.16.如图,己知,点,,,…在射线ON上,点,,,…在射线OM上,,,,…均为等边三角形,若,则的边长为________.17.若分式有意义,则__________.18.已知等腰三角形的一个内角为40°,则这个等腰三角形的顶角为______.三、解答题(共66分)19.(10分)如图,在△ABC中,AD是∠BAC的平分线,M是BC的中点,过M作MP∥AD交AC于P,求证:AB+AP=PC.20.(6分)(新知理解)如图①,若点、在直线l同侧,在直线l上找一点,使的值最小.作法:作点关于直线l的对称点,连接交直线l于点,则点即为所求.(解决问题)如图②,是边长为6cm的等边三角形的中线,点、分别在、上,则的最小值为cm;(拓展研究)如图③,在四边形的对角线上找一点,使.(保留作图痕迹,并对作图方法进行说明)21.(6分)某工地的一间仓库的主视图和左视图如图(单位:米),屋顶由两个完全相同的长方形组成,计算屋顶的总面积.(参考值:,,,)22.(8分)如图,∠A=∠D=90°,AC=DB,AC、DB相交于点O.求证:OB=OC.23.(8分)计算:(1)()﹣2+﹣(2)(﹣)2﹣(+)(﹣)24.(8分)计算:(1)()+()(2)25.(10分)如图,已知△ABC,∠C=90°,AC<BC,D为BC上一点,且到A、B两点的距离相等.(1)用直尺和圆规,作出点D的位置(不写作法,保留作图痕迹);(2)连结AD,若∠B=32°,求∠CAD的度数.26.(10分)甲、乙两名战士在相同条件下各射击10次,每次命中的环数如下:甲:8,6,7,8,9,10,6,5,4,7乙:7,9,8,5,6,7,7,6,7,8(1)分别计算以上两组数据的平均数;(2)分别计算以上两组数据的方差.
参考答案一、选择题(每小题3分,共30分)1、C【分析】根据函数的定义逐一判断即可.【详解】A选项,当自变量x取定一个值时,对应的函数值y不唯一,不符合题意;B选项,当自变量x取定一个值时,对应的函数值y不唯一,不符合题意;C选项,当自变量x取定一个值时,对应的函数值y唯一确定,符合题意;D选项,当自变量x取定一个值时,对应的函数值y不唯一,不符合题意.故选:C.【点睛】本题主要考查函数的定义,掌握函数的定义是解题的关键.2、D【分析】根据二次根式有意义的条件即可求出a的取值范围,然后根据二次根式的除法公式和分母有理化化简即可.【详解】解:,即,故选:D.【点睛】此题考查的是二次根式的化简,掌握二次根式有意义的条件、二次根式的除法公式和分母有理化是解题关键.3、A【分析】平面直角坐标系中任意一点P(x,y),关于x轴的对称点的坐标是(x,﹣y),关于y轴的对称点的坐标是(﹣x,y),三个顶点坐标的横坐标都乘以﹣1,并保持纵坐标不变,就是横坐标变成相反数.即所得到的点与原来的点关于y轴对称.【详解】解:根据轴对称的性质,知将△ABC的三个顶点的横坐标乘以﹣1,就是把横坐标变成相反数,纵坐标不变,因而是把三角形的三个顶点以y轴为对称轴进行轴对称变换.所得图形与原图形关于y轴对称.故选A.【点睛】本题主要考查了关于y轴对称点的性质,正确应用坐标判断两点关于y轴对称的方法:横坐标互为相反数,纵坐标相同是解题关键.4、A【分析】根据同类二次根式的合并,二次根式的乘除法则,分别进行各选项的判断即可.【详解】解:A、与不是同类二次根式,不能直接合并,故本选项正确;B、×=,计算正确,故本选项错误;C、÷=,计算正确,故本选项错误;D、(-)2=2,计算正确,故本选项错误;故选A.【点睛】本题考查了二次根式的加减及乘除运算,解答本题的关键是掌握二次根式的加减及乘除法则.5、C【分析】根据三角形的角平分线、中线和高的概念判断.【详解】解:∵AF是△ABC的中线,
∴BF=CF,A说法正确,不符合题意;
∵AD是高,
∴∠ADC=90°,
∴∠C+∠CAD=90°,B说法正确,不符合题意;
∵AE是角平分线,
∴∠BAE=∠CAE,C说法错误,符合题意;
∵BF=CF,
∴S△ABC=2S△ABF,D说法正确,不符合题意;
故选:C.【点睛】本题考查的是三角形的角平分线、中线和高,掌握它们的概念是解题的关键.6、C【分析】观察图形的面积,从整体看怎么表示,再从分部分来看怎么表示,两者相等,即可得答案.【详解】解:由图可知:正方形面积=两个正方形面积+两个长方形的面积故选:C.【点睛】本题考查了乘法公式的几何背景,明确几何图形面积的表达方式,熟练掌握相关乘法公式,是解题的关键.7、A【分析】分别把各点代入正比例函数的解析式进行检验即可.【详解】A、∵当x=−1时,y=2,∴此点在函数图象上,故本选项正确;B、∵当x=1时,y=−2≠2,∴此点不在函数图象上,故本选项错误;C、∵当x=0.5时,y=−1≠1,∴此点不在函数图象上,故本选项错误;D、∵当x=−2时,y=4≠1,∴此点不在函数图象上,故本选项错误.故选:A.【点睛】本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.8、A【分析】先根据三角形的一个外角等于与它不相邻的两个内角的和求出∠1,同理再求出∠α即可【详解】解:如图,∠1=∠D+∠C=45°+90°=135°,
∠α=∠1+∠B=135°+30°=165°.
故选A.【点睛】本题考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质是解题的关键.9、C【分析】分底为7cm和腰为7cm两种情况进行讨论,再根据三角形的三边关系进行验证.【详解】分两种情况讨论:①当底为7cm时,此时腰长为4cm和4cm,满足三角形的三边关系;②当腰为7cm时,此时另一腰为7cm,则底为1cm,满足三角形的三边关系;综上所述:底边长为1cm或7cm.故选:C.【点睛】本题考查了等腰三角形的性质及三角形的三边关系,分两种情况讨论是解答本题的关键.10、D【分析】根据题意首先提取公因式a,进而利用十字相乘法分解因式得出即可.【详解】解:.故选:D.【点睛】本题主要考查提取公因式法以及十字相乘法分解因式,熟练并正确利用十字相乘法分解因式是解题的关键.二、填空题(每小题3分,共24分)11、【分析】根据二次根式,被开方数a≥0,可得6-x≥0,解不等式即可.【详解】解:∵有意义∴6-x≥0∴故答案为:【点睛】本题考查了函数自变量的取值范围,二次根式有意义的条件,掌握二次根式,被开方数a≥0是解题的关键.12、1【解析】试题分析:设10人桌x张,8人桌y张,根据题意得:10x+8y=80∵x、y均为整数,∴x=0,y=10或x=4,y=5或x=8,y=0共1种方案.故答案是1.考点:二元一次方程的应用.13、2a(a+1)(a-1)【分析】先提取公因式2a,再对余下的多项式利用平方差公式继续分解.【详解】解:2a3-2a
=2a(a2-1)
=2a(a+1)(a-1).
故答案为2a(a+1)(a-1).【点睛】本题考查用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.14、【分析】延长AP交BC于E,根据AP垂直∠B的平分线BP于P,即可求出△ABP≌△BEP,又知△APC和△CPE等底同高,可以证明两三角形面积相等,即可证明三角形PBC的面积.【详解】解:延长AP交BC于E,如图所示:∵AP垂直∠B的平分线BP于P,∴∠ABP=∠EBP,∠APB=∠BPE=90°,在△APB和△EPB中,∴△APB≌△EPB(ASA),∴S△APB=S△EPB,AP=PE,∴△APC和△CPE等底同高,∴S△APC=S△PCE,∴S△PBC=S△PBE+S△PCE=S△ABC=4cm1,故答案为4cm1.【点睛】本题考查了三角形面积和全等三角形的性质和判定的应用,关键是求出S△PBC=S△PBE+S△PCE=S△ABC.15、【分析】根据分式值为0的条件①分母不为0,②分子等于0计算即可.【详解】解:由题意得且由解得;由解得或1(舍去)所以实数的值为.故答案为:.【点睛】本题考查了分式值为零的条件,熟练掌握分式值为0时满足得条件是解题的关键,易错点在于容易忽视分式的分母不为0.16、32【分析】根据底边三角形的性质求出以及平行线的性质得出,以及,得出,,进而得出答案.【详解】解:△是等边三角形,,,,,,又,,,,,△、△是等边三角形,,,,,,,,,,,同理可得:,△的边长为,△的边长为.故答案为:.【点睛】本题考查了等边三角形的性质以及30°直角三角形的性质,根据已知得出,,进而发现规律是解题关键.17、≠【分析】根据分式有意义的条件作答即可,即分母不为1.【详解】解:由题意得,2x-1≠1,解得x≠.故答案为:≠.【点睛】本题考查分式有意义的条件,掌握分式有意义时,分母不为1是解题的关键.18、和【解析】试题分析:首先知有两种情况(顶角是40°和底角是40°时),由等边对等角求出底角的度数,用三角形的内角和定理即可求出顶角的度数.解:△ABC,AB=AC.有两种情况:(1)顶角∠A=40°,(2)当底角是40°时,∵AB=AC,∴∠B=∠C=40°,∵∠A+∠B+∠C=180°,∴∠A=180°﹣40°﹣40°=100°,∴这个等腰三角形的顶角为40°和100°.故答案为40°或100°.考点:等腰三角形的性质;三角形内角和定理.三、解答题(共66分)19、证明见解析.【分析】延长BA交MP的延长线于点E,过点B作BF∥AC,交PM的延长线于点F,由AD是∠BAC的平分线,AD∥PM得∠E=∠APE,AP=AE,再证△BMF≌△CMP,得PC=BF,∠F=∠CPM,进而即可得到结论.【详解】延长BA交MP的延长线于点E,过点B作BF∥AC,交PM的延长线于点F,∵AD是∠BAC的平分线,∴∠BAD=∠CAD,∵AD∥PM∴∠BAD=∠E,∠CAD=∠APE=∠CPM∴∠E=∠APE∴AP=AE.∵M是BC的中点,∴BM=MC∵BF∥AC∴∠ACB=∠CBF,又∵∠BMF=∠CMP,∴△BMF≌△CMP(ASA),∴PC=BF,∠F=∠CPM,∴∠F=∠E,∴BE=BF∴PC=BE=BA+AE=BA+AP.【点睛】本题主要考查角平分线的定义以及平行线的性质,三角形全等的判定和性质定理以及等腰三角形的判定定理,添加合适的辅助线,构造全等三角形和等腰三角形,是解题的关键.20、(1);(2)作图见解析.【解析】试题分析:(1)作点E关于AD的对称点F,连接PF,则PE=PF,根据两点之间线段最短以及垂线段最短,得出当CF⊥AB时,PC+PE=PC+PF=CF(最短),最后根据勾股定理,求得CF的长即可得出PC+PE的最小值;
(2)根据轴对称的性质进行作图.方法1:作B关于AC的对称点E,连接DE并延长,交AC于P,连接BP,则∠APB=∠APD.方法2:作点D关于AC的对称点D',连接D'B并延长与AC的交于点P,连接DP,则∠APB=∠APD.试题解析:(1)【解决问题】
如图②,作点E关于AD的对称点F,连接PF,则PE=PF,
当点F,P,C在一条直线上时,PC+PE=PC+PF=CF(最短),
当CF⊥AB时,CF最短,此时BF=AB=3(cm),
∴Rt△BCF中,CF=(cm),
∴PC+PE的最小值为3cm;
(2)【拓展研究】
方法1:如图③,作B关于AC的对称点E,连接DE并延长,交AC于P,点P即为所求,连接BP,则∠APB=∠APD.
方法2:如图④,作点D关于AC的对称点D',连接D'B并延长与AC的交于点P,点P即为所求,连接DP,则∠APB=∠APD.
21、41.08【分析】如图所示,求出DC=2.5,BC=3,由左视图可得AC=1,根据勾股定理求得AB=,由左视图得长方形屋顶长为6.5,根据长方形面积计算公式求得一面屋顶的面积,然后再乘以2即可得解.【详解】如图所示,易知四边形GEDC和BFEG均为矩形,∴BG=EF=0.5,GC=DE=,∴BC=BG+GC=0.5+2.5=3,由左视图可知AC=1,在Rt△ABC中,∴由左视图可知屋顶长为6.5,所以,屋顶顶面的面积为:==41.08.【点睛】此题主要考查了运用勾股定理解决实际问题,同时考查了几何体的三视图.22、证明见解析.【解析】分析:因为∠A=∠D=90°,AC=BD,BC=BC,知Rt△BAC≌Rt△CDB(HL),所以∠ACB=∠DBC,故OB=OC.【解答】证明:在Rt△ABC和Rt△DCB中,∴Rt△ABC≌Rt△DCB(HL),∴∠OBC=∠OCB,∴BO=CO.点睛:此题主要考查了全等三角形的判定,全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.23、(1)4+;(2)4﹣2【分析】(1)先根据负整数指数幂的意义计算,然后把二次根式化为最简二次根式后合并即可;(2)利用完全平方公式和平方差公式计算.【详解】解:(1)原式=;(2)原式.【点睛】本题结合平方差和完全平方公式考查了二次根式的运算,熟练掌握公式与二次根式的运算性质是解答关键.24、(1)3+;(2)﹣﹣1.【分析】(1)先分别化简二次根式同时去括号,再合并同类二次根式;(2)先化简二次根式,同时计算除
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 校长禁毒防艾教育讲话稿
- 高端出行体验:汽车租赁合同
- 建筑安全防护合同
- 雨水管道安装施工合同
- 跆拳道馆广告装修合同
- 建筑防腐模板施工承包合同
- 美甲沙龙广告装饰合同
- 咨询服务行业顾问聘用合同
- 医疗器械研发合同执行策略
- 2024版玻璃幕墙施工合同范本
- GB/T 44456-2024电子竞技场馆运营服务规范
- 系统工程教案
- 限期交货保证书模板
- 中心静脉压的测量方法及临床意义
- 07MS101 市政给水管道工程及附属设施
- 2024年纪委监委招聘笔试必背试题库500题(含答案)
- 店铺(初级)营销师认证考试题库附有答案
- 2025年高考语文备考之名著阅读《乡土中国》重要概念解释一览表
- 兽药生产质量管理规范教材教学课件
- 变、配电室门禁管理制度
- T-SDEPI 043-2024 土壤有机污染物来源解析主成分分析法技术指南
评论
0/150
提交评论