版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届福建省莆田一中等三校第二次高考模拟高三数学试题试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在中,,则=()A. B.C. D.2.将函数图象上所有点向左平移个单位长度后得到函数的图象,如果在区间上单调递减,那么实数的最大值为()A. B. C. D.3.函数y=sin2x的图象可能是A. B.C. D.4.函数与在上最多有n个交点,交点分别为(,……,n),则()A.7 B.8 C.9 D.105.已知双曲线的左、右焦点分别为、,抛物线与双曲线有相同的焦点.设为抛物线与双曲线的一个交点,且,则双曲线的离心率为()A.或 B.或 C.或 D.或6.如图,在平行四边形中,对角线与交于点,且,则()A. B.C. D.7.已知双曲线,过原点作一条倾斜角为直线分别交双曲线左、右两支P,Q两点,以线段PQ为直径的圆过右焦点F,则双曲线离心率为A. B. C.2 D.8.设正项等差数列的前项和为,且满足,则的最小值为A.8 B.16 C.24 D.369.执行如图的程序框图,若输出的结果,则输入的值为()A. B.C.3或 D.或10.已知菱形的边长为2,,则()A.4 B.6 C. D.11.如图,抛物线:的焦点为,过点的直线与抛物线交于,两点,若直线与以为圆心,线段(为坐标原点)长为半径的圆交于,两点,则关于值的说法正确的是()A.等于4 B.大于4 C.小于4 D.不确定12.设分别是双线的左、右焦点,为坐标原点,以为直径的圆与该双曲线的两条渐近线分别交于两点(位于轴右侧),且四边形为菱形,则该双曲线的渐近线方程为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.在直角坐标系中,已知点和点,若点在的平分线上,且,则向量的坐标为___________.14.某次足球比赛中,,,,四支球队进入了半决赛.半决赛中,对阵,对阵,获胜的两队进入决赛争夺冠军,失利的两队争夺季军.已知他们之间相互获胜的概率如下表所示.获胜概率—0.40.30.8获胜概率0.6—0.70.5获胜概率0.70.3—0.3获胜概率0.20.50.7—则队获得冠军的概率为______.15.某大学、、、四个不同的专业人数占本校总人数的比例依次为、、、,现欲采用分层抽样的方法从这四个专业的总人数中抽取人调查毕业后的就业情况,则专业应抽取_________人.16.在中,,.若,则_________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数,.(1)若,,求实数的值.(2)若,,求正实数的取值范围.18.(12分)已知直线与抛物线交于两点.(1)当点的横坐标之和为4时,求直线的斜率;(2)已知点,直线过点,记直线的斜率分别为,当取最大值时,求直线的方程.19.(12分)选修4-5:不等式选讲已知函数.(1)设,求不等式的解集;(2)已知,且的最小值等于,求实数的值.20.(12分)已知数列满足.(1)求数列的通项公式;(2)设数列的前项和为,证明:.21.(12分)在直角坐标系中,直线的参数方程为(为参数),以为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求的普通方程和的直角坐标方程;(2)把曲线向下平移个单位,然后各点横坐标变为原来的倍得到曲线(纵坐标不变),设点是曲线上的一个动点,求它到直线的距离的最小值.22.(10分)已知函数,.(1)证明:函数的极小值点为1;(2)若函数在有两个零点,证明:.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解题分析】
在上分别取点,使得,可知为平行四边形,从而可得到,即可得到答案.【题目详解】如下图,,在上分别取点,使得,则为平行四边形,故,故答案为B.【题目点拨】本题考查了平面向量的线性运算,考查了学生逻辑推理能力,属于基础题.2、B【解题分析】
根据条件先求出的解析式,结合三角函数的单调性进行求解即可.【题目详解】将函数图象上所有点向左平移个单位长度后得到函数的图象,则,设,则当时,,,即,要使在区间上单调递减,则得,得,即实数的最大值为,故选:B.【题目点拨】本小题主要考查三角函数图象变换,考查根据三角函数的单调性求参数,属于中档题.3、D【解题分析】分析:先研究函数的奇偶性,再研究函数在上的符号,即可判断选择.详解:令,因为,所以为奇函数,排除选项A,B;因为时,,所以排除选项C,选D.点睛:有关函数图象的识别问题的常见题型及解题思路:(1)由函数的定义域,判断图象的左、右位置,由函数的值域,判断图象的上、下位置;(2)由函数的单调性,判断图象的变化趋势;(3)由函数的奇偶性,判断图象的对称性;(4)由函数的周期性,判断图象的循环往复.4、C【解题分析】
根据直线过定点,采用数形结合,可得最多交点个数,然后利用对称性,可得结果.【题目详解】由题可知:直线过定点且在是关于对称如图通过图像可知:直线与最多有9个交点同时点左、右边各四个交点关于对称所以故选:C【题目点拨】本题考查函数对称性的应用,数形结合,难点在于正确画出图像,同时掌握基础函数的性质,属难题.5、D【解题分析】
设,,根据和抛物线性质得出,再根据双曲线性质得出,,最后根据余弦定理列方程得出、间的关系,从而可得出离心率.【题目详解】过分别向轴和抛物线的准线作垂线,垂足分别为、,不妨设,,则,为双曲线上的点,则,即,得,,又,在中,由余弦定理可得,整理得,即,,解得或.故选:D.【题目点拨】本题考查了双曲线离心率的求解,涉及双曲线和抛物线的简单性质,考查运算求解能力,属于中档题.6、C【解题分析】
画出图形,以为基底将向量进行分解后可得结果.【题目详解】画出图形,如下图.选取为基底,则,∴.故选C.【题目点拨】应用平面向量基本定理应注意的问题(1)只要两个向量不共线,就可以作为平面的一组基底,基底可以有无穷多组,在解决具体问题时,合理选择基底会给解题带来方便.(2)利用已知向量表示未知向量,实质就是利用平行四边形法则或三角形法则进行向量的加减运算或数乘运算.7、B【解题分析】
求得直线的方程,联立直线的方程和双曲线的方程,求得两点坐标的关系,根据列方程,化简后求得离心率.【题目详解】设,依题意直线的方程为,代入双曲线方程并化简得,故,设焦点坐标为,由于以为直径的圆经过点,故,即,即,即,两边除以得,解得.故,故选B.【题目点拨】本小题主要考查直线和双曲线的交点,考查圆的直径有关的几何性质,考查运算求解能力,属于中档题.8、B【解题分析】
方法一:由题意得,根据等差数列的性质,得成等差数列,设,则,,则,当且仅当时等号成立,从而的最小值为16,故选B.方法二:设正项等差数列的公差为d,由等差数列的前项和公式及,化简可得,即,则,当且仅当,即时等号成立,从而的最小值为16,故选B.9、D【解题分析】
根据逆运算,倒推回求x的值,根据x的范围取舍即可得选项.【题目详解】因为,所以当,解得
,所以3是输入的x的值;当时,解得,所以是输入的x的值,所以输入的x的值为
或3,故选:D.【题目点拨】本题考查了程序框图的简单应用,通过结果反求输入的值,属于基础题.10、B【解题分析】
根据菱形中的边角关系,利用余弦定理和数量积公式,即可求出结果.【题目详解】如图所示,菱形形的边长为2,,∴,∴,∴,且,∴,故选B.【题目点拨】本题主要考查了平面向量的数量积和余弦定理的应用问题,属于基础题..11、A【解题分析】
利用的坐标为,设直线的方程为,然后联立方程得,最后利用韦达定理求解即可【题目详解】据题意,得点的坐标为.设直线的方程为,点,的坐标分别为,.讨论:当时,;当时,据,得,所以,所以.【题目点拨】本题考查直线与抛物线的相交问题,解题核心在于联立直线与抛物线的方程,属于基础题12、B【解题分析】
由于四边形为菱形,且,所以为等边三角形,从而可得渐近线的倾斜角,求出其斜率.【题目详解】如图,因为四边形为菱形,,所以为等边三角形,,两渐近线的斜率分别为和.故选:B【题目点拨】此题考查的是求双曲线的渐近线方程,利用了数形结合的思想,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】
点在的平分线可知与向量共线,利用线性运算求解即可.【题目详解】因为点在的平线上,所以存在使,而,可解得,所以,故答案为:【题目点拨】本题主要考查了向量的线性运算,利用向量的坐标求向量的模,属于中档题.14、0.18【解题分析】
根据表中信息,可得胜C的概率;分类讨论B或D进入决赛,再计算A胜B或A胜C的概率即可求解.【题目详解】由表中信息可知,胜C的概率为;若B进入决赛,B胜D的概率为,则A胜B的概率为;若D进入决赛,D胜B的概率为,则A胜D的概率为;由相应的概率公式知,则A获得冠军的概率为.故答案为:0.18【题目点拨】本题考查了独立事件的概率应用,互斥事件的概率求法,属于基础题.15、【解题分析】
求出专业人数在、、、四个专业总人数的比例后可得.【题目详解】由题意、、、四个不同的专业人数的比例为,故专业应抽取的人数为.故答案为:1.【题目点拨】本题考查分层抽样,根据分层抽样的定义,在各层抽取样本数量是按比例抽取的.16、【解题分析】分析:首先设出相应的直角边长,利用余弦勾股定理得到相应的斜边长,之后应用余弦定理得到直角边长之间的关系,从而应用正切函数的定义,对边比临边,求得对应角的正切值,即可得结果.详解:根据题意,设,则,根据,得,由勾股定理可得,根据余弦定理可得,化简整理得,即,解得,所以,故答案是.点睛:该题考查的是有关解三角形的问题,在解题的过程中,注意分析要求对应角的正切值,需要求谁,而题中所给的条件与对应的结果之间有什么样的连线,设出直角边长,利用所给的角的余弦值,利用余弦定理得到相应的等量关系,求得最后的结果.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)1(2)【解题分析】
(1)求得和,由,,得,令,令导数求得函数的单调性,利用,即可求解.(2)解法一:令,利用导数求得的单调性,转化为,令(),利用导数得到的单调性,分类讨论,即可求解.解法二:可利用导数,先证明不等式,,,,令(),利用导数,分类讨论得出函数的单调性与最值,即可求解.【题目详解】(1)由题意,得,,由,…①,得,令,则,因为,所以在单调递增,又,所以当时,,单调递增;当时,,单调递减;所以,当且仅当时等号成立.故方程①有且仅有唯一解,实数的值为1.(2)解法一:令(),则,所以当时,,单调递增;当时,,单调递减;故.令(),则.(i)若时,,在单调递增,所以,满足题意.(ii)若时,,满足题意.(iii)若时,,在单调递减,所以.不满足题意.综上述:.解法二:先证明不等式,,,…(*).令,则当时,,单调递增,当时,,单调递减,所以,即.变形得,,所以时,,所以当时,.又由上式得,当时,,,.因此不等式(*)均成立.令(),则,(i)若时,当时,,单调递增;当时,,单调递减;故.(ii)若时,,在单调递增,所以.因此,①当时,此时,,,则需由(*)知,,(当且仅当时等号成立),所以.②当时,此时,,则当时,(由(*)知);当时,(由(*)知).故对于任意,.综上述:.【题目点拨】本题主要考查导数在函数中的综合应用,着重考查了转化与化归思想、分类讨论、及逻辑推理能力与计算能力,对于恒成立问题,通常要构造新函数,利用导数研究函数的单调性,求出最值,进而得出相应的含参不等式,从而求出参数的取值范围;也可分离变量,构造新函数,直接把问题转化为函数的最值问题.18、(1)(2)【解题分析】
(1)设,根据直线的斜率公式即可求解;(2)设直线的方程为,联立直线与抛物线方程,由韦达定理得,,结合直线的斜率公式得到,换元后讨论的符号,求最值可求解.【题目详解】(1)设,因为,即直线的斜率为1.(2)显然直线的斜率存在,设直线的方程为.联立方程组,可得则,令,则则当时,;当且仅当,即时,解得时,取“=”号,当时,;当时,综上所述,当时,取得最大值,此时直线的方程是.【题目点拨】本题主要考查了直线的斜率公式,直线与抛物线的位置关系,换元法,均值不等式,考查了运算能力,属于难题.19、(1)(2)【解题分析】
(1)把f(x)去绝对值写成分段函数的形式,分类讨论,分别求得解集,综合可得结论.(2)把f(x)去绝对值写成分段函数,画出f(x)的图像,找出利用条件求得a的值.【题目详解】(1)时,.当时,即为,解得.当时,,解得.当时,,解得.综上,的解集为.(2).,由的图象知,,.【题目点拨】本题主要考查含绝对值不等式的解法及含绝对值的函数的最值问题,体现了分类讨论的数学思想,属于中档题20、(1)(2)证明见解析【解题分析】
(1),①当时,,②两式相减即得数列的通项公式;(2)先求出,再利用裂项相消法求和证明.【题目详解】(1)解:,①当时,.当时,,②由①-②,得,因为符合上式,所以.(2)证明:因为,所以.【题目点拨】本题主要考查数列通项的求法,考查数列求和,意在考查学生对这些知识的理解掌握水平.21、(1),;(2).【解
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度知识产权对赌合同参考范本
- 2025-2030全球医用安全输注类设备行业调研及趋势分析报告
- 2025年全球及中国一次性多柱层析系统行业头部企业市场占有率及排名调研报告
- 2025-2030全球皮拉尼电容膜片式真空计行业调研及趋势分析报告
- 2025-2030全球熟海鲜行业调研及趋势分析报告
- 二零二五年度米香型白酒品牌形象设计合同
- 花艺行业鲜花订购合同
- 房地产行业房屋买卖风险告知合同
- 厨具采购合同
- 信息技术服务及维护合同
- 玻璃钢烟囱方案
- 中国电信应急管理整体解决方案
- 中小学教师师德师风法律法规培训
- 医疗器械质量管理体系文件模板
- 秦始皇嬴政人物生平介绍PPT
- 在马克思墓前的讲话说课稿公开课一等奖市赛课获奖课件
- 骨科无痛病房的建立
- 送养收养合同协议书
- 塑料成型模具设计(第2版)江昌勇课件0-导论
- 汉语拼音发音口型及配图
- 绩效考核管理医院绩效分配方案包括实施细则考核表
评论
0/150
提交评论