辽宁师附中2024届高考第二次模拟考试数学试题文试题_第1页
辽宁师附中2024届高考第二次模拟考试数学试题文试题_第2页
辽宁师附中2024届高考第二次模拟考试数学试题文试题_第3页
辽宁师附中2024届高考第二次模拟考试数学试题文试题_第4页
辽宁师附中2024届高考第二次模拟考试数学试题文试题_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

辽宁师附中2024届高考第二次模拟考试数学试题文试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若函数有且只有4个不同的零点,则实数的取值范围是()A. B. C. D.2.已知数列,,,…,是首项为8,公比为得等比数列,则等于()A.64 B.32 C.2 D.43.已知复数满足(是虚数单位),则=()A. B. C. D.4.若x,y满足约束条件则z=的取值范围为()A.[] B.[,3] C.[,2] D.[,2]5.如图示,三棱锥的底面是等腰直角三角形,,且,,则与面所成角的正弦值等于()A. B. C. D.6.的展开式中的系数为()A. B. C. D.7.已知椭圆:的左、右焦点分别为,,过的直线与轴交于点,线段与交于点.若,则的方程为()A. B. C. D.8.函数的图像大致为().A. B.C. D.9.已知双曲线,点是直线上任意一点,若圆与双曲线的右支没有公共点,则双曲线的离心率取值范围是().A. B. C. D.10.已知函数()的最小值为0,则()A. B. C. D.11.已知集合,,则等于()A. B. C. D.12.函数在的图像大致为A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知定义在上的函数的图象关于点对称,,若函数图象与函数图象的交点为,则_____.14.某校共有师生1600人,其中教师有1000人,现用分层抽样的方法,从所有师生中抽取一个容量为80的样本,则抽取学生的人数为_____.15.数列的前项和为,数列的前项和为,满足,,且.若任意,成立,则实数的取值范围为__________.16.在三棱锥中,,三角形为等边三角形,二面角的余弦值为,当三棱锥的体积最大值为时,三棱锥的外接球的表面积为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)分别为的内角的对边.已知.(1)若,求;(2)已知,当的面积取得最大值时,求的周长.18.(12分)设数列是公差不为零的等差数列,其前项和为,,若,,成等比数列.(1)求及;(2)设,设数列的前项和,证明:.19.(12分)如图,已知,分别是正方形边,的中点,与交于点,,都垂直于平面,且,,是线段上一动点.(1)当平面,求的值;(2)当是中点时,求四面体的体积.20.(12分)2018年9月,台风“山竹”在我国多个省市登陆,造成直接经济损失达52亿元.某青年志愿者组织调查了某地区的50个农户在该次台风中造成的直接经济损失,将收集的数据分成五组:,,,,(单位:元),得到如图所示的频率分布直方图.(1)试根据频率分布直方图估计该地区每个农户的平均损失(同一组中的数据用该组区间的中点值代表);(2)台风后该青年志愿者与当地政府向社会发出倡议,为该地区的农户捐款帮扶,现从这50户并且损失超过4000元的农户中随机抽取2户进行重点帮扶,设抽出损失超过8000元的农户数为,求的分布列和数学期望.21.(12分)诚信是立身之本,道德之基,我校学生会创设了“诚信水站”,既便于学生用水,又推进诚信教育,并用“”表示每周“水站诚信度”,为了便于数据分析,以四周为一周期,如表为该水站连续十二周(共三个周期)的诚信数据统计:第一周第二周第三周第四周第一周期第二周期第三周期(Ⅰ)计算表中十二周“水站诚信度”的平均数;(Ⅱ)若定义水站诚信度高于的为“高诚信度”,以下为“一般信度”则从每个周期的前两周中随机抽取两周进行调研,计算恰有两周是“高诚信度”的概率;(Ⅲ)已知学生会分别在第一个周期的第四周末和第二个周期的第四周末各举行了一次“以诚信为本”的主题教育活动,根据已有数据,说明两次主题教育活动的宣传效果,并根据已有数据陈述理由.22.(10分)设,,,.(1)若的最小值为4,求的值;(2)若,证明:或.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解题分析】

由是偶函数,则只需在上有且只有两个零点即可.【题目详解】解:显然是偶函数所以只需时,有且只有2个零点即可令,则令,递减,且递增,且时,有且只有2个零点,只需故选:B【题目点拨】考查函数性质的应用以及根据零点个数确定参数的取值范围,基础题.2、A【解题分析】

根据题意依次计算得到答案.【题目详解】根据题意知:,,故,,.故选:.【题目点拨】本题考查了数列值的计算,意在考查学生的计算能力.3、A【解题分析】

把已知等式变形,再由复数代数形式的乘除运算化简得答案.【题目详解】解:由,得,.故选.【题目点拨】本题考查复数代数形式的乘除运算,考查复数的基本概念,是基础题.4、D【解题分析】

由题意作出可行域,转化目标函数为连接点和可行域内的点的直线斜率的倒数,数形结合即可得解.【题目详解】由题意作出可行域,如图,目标函数可表示连接点和可行域内的点的直线斜率的倒数,由图可知,直线的斜率最小,直线的斜率最大,由可得,由可得,所以,,所以.故选:D.【题目点拨】本题考查了非线性规划的应用,属于基础题.5、A【解题分析】

首先找出与面所成角,根据所成角所在三角形利用余弦定理求出所成角的余弦值,再根据同角三角函数关系求出所成角的正弦值.【题目详解】由题知是等腰直角三角形且,是等边三角形,设中点为,连接,,可知,,同时易知,,所以面,故即为与面所成角,有,故.故选:A.【题目点拨】本题主要考查了空间几何题中线面夹角的计算,属于基础题.6、C【解题分析】由题意,根据二项式定理展开式的通项公式,得展开式的通项为,则展开式的通项为,由,得,所以所求的系数为.故选C.点睛:此题主要考查二项式定理的通项公式的应用,以及组合数、整数幂的运算等有关方面的知识与技能,属于中低档题,也是常考知识点.在二项式定理的应用中,注意区分二项式系数与系数,先求出通项公式,再根据所求问题,通过确定未知的次数,求出,将的值代入通项公式进行计算,从而问题可得解.7、D【解题分析】

由题可得,所以,又,所以,得,故可得椭圆的方程.【题目详解】由题可得,所以,又,所以,得,,所以椭圆的方程为.故选:D【题目点拨】本题主要考查了椭圆的定义,椭圆标准方程的求解.8、A【解题分析】

本题采用排除法:由排除选项D;根据特殊值排除选项C;由,且无限接近于0时,排除选项B;【题目详解】对于选项D:由题意可得,令函数,则,;即.故选项D排除;对于选项C:因为,故选项C排除;对于选项B:当,且无限接近于0时,接近于,,此时.故选项B排除;故选项:A【题目点拨】本题考查函数解析式较复杂的图象的判断;利用函数奇偶性、特殊值符号的正负等有关性质进行逐一排除是解题的关键;属于中档题.9、B【解题分析】

先求出双曲线的渐近线方程,可得则直线与直线的距离,根据圆与双曲线的右支没有公共点,可得,解得即可.【题目详解】由题意,双曲线的一条渐近线方程为,即,∵是直线上任意一点,则直线与直线的距离,∵圆与双曲线的右支没有公共点,则,∴,即,又故的取值范围为,故选:B.【题目点拨】本题主要考查了直线和双曲线的位置关系,以及两平行线间的距离公式,其中解答中根据圆与双曲线的右支没有公共点得出是解答的关键,着重考查了推理与运算能力,属于基础题.10、C【解题分析】

设,计算可得,再结合图像即可求出答案.【题目详解】设,则,则,由于函数的最小值为0,作出函数的大致图像,结合图像,,得,所以.故选:C【题目点拨】本题主要考查了分段函数的图像与性质,考查转化思想,考查数形结合思想,属于中档题.11、A【解题分析】

进行交集的运算即可.【题目详解】,1,2,,,,1,.故选:.【题目点拨】本题主要考查了列举法、描述法的定义,考查了交集的定义及运算,考查了计算能力,属于基础题.12、B【解题分析】

由分子、分母的奇偶性,易于确定函数为奇函数,由的近似值即可得出结果.【题目详解】设,则,所以是奇函数,图象关于原点成中心对称,排除选项C.又排除选项D;,排除选项A,故选B.【题目点拨】本题通过判断函数的奇偶性,缩小考察范围,通过计算特殊函数值,最后做出选择.本题较易,注重了基础知识、基本计算能力的考查.二、填空题:本题共4小题,每小题5分,共20分。13、4038.【解题分析】

由函数图象的对称性得:函数图象与函数图象的交点关于点对称,则,,即,得解.【题目详解】由知:得函数的图象关于点对称又函数的图象关于点对称则函数图象与函数图象的交点关于点对称则故,即本题正确结果:【题目点拨】本题考查利用函数图象的对称性来求值的问题,关键是能够根据函数解析式判断出函数的对称中心,属中档题.14、1【解题分析】

直接根据分层抽样的比例关系得到答案.【题目详解】分层抽样的抽取比例为,∴抽取学生的人数为6001.故答案为:1.【题目点拨】本题考查了分层抽样的计算,属于简单题.15、【解题分析】

当时,,可得到,再用累乘法求出,再求出,根据定义求出,再借助单调性求解.【题目详解】解:当时,,则,,当时,,,,,,(当且仅当时等号成立),,故答案为:.【题目点拨】本题主要考查已知求,累乘法,主要考查计算能力,属于中档题.16、【解题分析】

根据题意作出图象,利用三垂线定理找出二面角的平面角,再设出的长,即可求出三棱锥的高,然后利用利用基本不等式即可确定三棱锥的体积最大值,从而得出各棱的长度,最后根据球的几何性质,利用球心距,半径,底面半径之间的关系即可求出三棱锥的外接球的表面积.【题目详解】如图所示:过点作面,垂足为,过点作交于点,连接.则为二面角的平面角的补角,即有.∵易证面,∴,而三角形为等边三角形,∴为的中点.设,.∴.故三棱锥的体积为当且仅当时,,即.∴三点共线.设三棱锥的外接球的球心为,半径为.过点作于,∴四边形为矩形.则,,,在中,,解得.三棱锥的外接球的表面积为.故答案为:.【题目点拨】本题主要考查三棱锥的外接球的表面积的求法,涉及二面角的运用,基本不等式的应用,以及球的几何性质的应用,意在考查学生的直观想象能力,数学运算能力和逻辑推理能力,属于较难题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解题分析】

(1)根据正弦定理,将,化角为边,即可求出,再利用正弦定理即可求出;(2)根据,选择,所以当的面积取得最大值时,最大,结合(1)中条件,即可求出最大时,对应的的值,再根据余弦定理求出边,进而得到的周长.【题目详解】(1)由,得,即.因为,所以.由,得.(2)因为,所以,当且仅当时,等号成立.因为的面积.所以当时,的面积取得最大值,此时,则,所以的周长为.【题目点拨】本题主要考查利用正弦定理和余弦定理解三角形,涉及到基本不等式的应用,意在考查学生的转化能力和数学运算能力.18、(1),;(2)证明见解析.【解题分析】

(1)根据题中条件求出等差数列的首项和公差,然后根据首项和公差即可求出数列的通项和前项和;(2)根据裂项求和求出,根据的表达式即可证明.【题目详解】(1)设的公差为,由题意有,且,所以,;(2)因为,所以,.【题目点拨】本题主要考查了等差数列基本量的求解,裂项求和法,属于基础题.19、(1).(2)【解题分析】

(1)利用线面垂直的性质得出,进而得出,利用相似三角形的性质,得出,从而得出的值;(2)利用线面垂直的判定定理得出平面,进而得出四面体的体积,计算出,,即可得出四面体的体积.【题目详解】(1)因为平面,平面,所以又因为,都垂直于平面,所以又,分别是正方形边,的中点,且,所以.(2)因为,分别是正方形边,的中点,所以又因为,都垂直于平面,平面,所以因为平面,所以平面所以,四面体的体积,所以.【题目点拨】本题主要考查了线面垂直的性质定理的应用,以及求棱锥的体积,属于中档题.20、(1)3360元;(2)见解析【解题分析】

(1)根据频率分布直方图计算每个农户的平均损失;(2)根据频率分布直方图计算随机变量X的可能取值,再求X的分布列和数学期望值.【题目详解】(1)记每个农户的平均损失为元,则;(2)由频率分布直方图,可得损失超过1000元的农户共有(0.00009+0.00003+0.00003)×2000×50=15(户),损失超过8000元的农户共有0.00003×2000×50=3(户),随机抽取2户,则X的可能取值为0,1,2;计算P(X=0)==,P(X=1)==,P(X=2)==,所以X的分布列为;X012P数学期望为E(X)=0×+1×+2×=.【题目点拨】本题考查了频率分布直方图与离

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论