版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
甘肃省陇南市徽县第二中学2024届高三下期中考试(数学试题理)试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.过抛物线的焦点作直线与抛物线在第一象限交于点A,与准线在第三象限交于点B,过点作准线的垂线,垂足为.若,则()A. B. C. D.2.某学校组织学生参加英语测试,成绩的频率分布直方图如图,数据的分组依次为,若低于60分的人数是18人,则该班的学生人数是()A.45 B.50 C.55 D.603.定义在R上的偶函数满足,且在区间上单调递减,已知是锐角三角形的两个内角,则的大小关系是()A. B.C. D.以上情况均有可能4.已知底面是等腰直角三角形的三棱锥P-ABC的三视图如图所示,俯视图中的两个小三角形全等,则()A.PA,PB,PC两两垂直 B.三棱锥P-ABC的体积为C. D.三棱锥P-ABC的侧面积为5.函数(,,)的部分图象如图所示,则的值分别为()A.2,0 B.2, C.2, D.2,6.已知集合,,则为()A. B. C. D.7.已知等比数列满足,,则()A. B. C. D.8.若复数满足,则的虚部为()A.5 B. C. D.-59.已知等差数列的前n项和为,且,,若(,且),则i的取值集合是()A. B. C. D.10.直角坐标系中,双曲线()与抛物线相交于、两点,若△是等边三角形,则该双曲线的离心率()A. B. C. D.11.在关于的不等式中,“”是“恒成立”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件12.函数f(x)=lnA. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.连续掷两次骰子,分别得到的点数作为点的坐标,则点落在圆内的概率为______________.14.在平面直角坐标系中,点的坐标为,点是直线:上位于第一象限内的一点.已知以为直径的圆被直线所截得的弦长为,则点的坐标__________.15.如图,在长方体中,,E,F,G分别为的中点,点P在平面ABCD内,若直线平面EFG,则线段长度的最小值是________________.16.已知集合A=,B=,若AB中有且只有一个元素,则实数a的值为_______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数.若在定义域内存在,使得成立,则称为函数的局部对称点.(1)若a,且a≠0,证明:函数有局部对称点;(2)若函数在定义域内有局部对称点,求实数c的取值范围;(3)若函数在R上有局部对称点,求实数m的取值范围.18.(12分)如图,在直角中,,,,点在线段上.(1)若,求的长;(2)点是线段上一点,,且,求的值.19.(12分)在正三棱柱ABCA1B1C1中,已知AB=1,AA1=2,E,F,G分别是棱AA1,AC和A1C1的中点,以为正交基底,建立如图所示的空间直角坐标系F-xyz.(1)求异面直线AC与BE所成角的余弦值;(2)求二面角F-BC1-C的余弦值.20.(12分)设函数.(1)当时,求不等式的解集;(2)若对任意都有,求实数的取值范围.21.(12分)已知曲线的参数方程为为参数),以直角坐标系原点为极点,以轴正半轴为极轴并取相同的单位长度建立极坐标系.(1)求曲线的极坐标方程,并说明其表示什么轨迹;(2)若直线的极坐标方程为,求曲线上的点到直线的最大距离.22.(10分)在①,②,③这三个条件中任选一个,补充在下面问题中.若问题中的正整数存在,求的值;若不存在,说明理由.设正数等比数列的前项和为,是等差数列,__________,,,,是否存在正整数,使得成立?
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解题分析】
需结合抛物线第一定义和图形,得为等腰三角形,设准线与轴的交点为,过点作,再由三角函数定义和几何关系分别表示转化出,,结合比值与正切二倍角公式化简即可【题目详解】如图,设准线与轴的交点为,过点作.由抛物线定义知,所以,,,,所以.故选:C【题目点拨】本题考查抛物线的几何性质,三角函数的性质,数形结合思想,转化与化归思想,属于中档题2、D【解题分析】
根据频率分布直方图中频率=小矩形的高×组距计算成绩低于60分的频率,再根据样本容量求出班级人数.【题目详解】根据频率分布直方图,得:低于60分的频率是(0.005+0.010)×20=0.30,∴样本容量(即该班的学生人数)是60(人).故选:D.【题目点拨】本题考查了频率分布直方图的应用问题,也考查了频率的应用问题,属于基础题3、B【解题分析】
由已知可求得函数的周期,根据周期及偶函数的对称性可求在上的单调性,结合三角函数的性质即可比较.【题目详解】由可得,即函数的周期,因为在区间上单调递减,故函数在区间上单调递减,根据偶函数的对称性可知,在上单调递增,因为,是锐角三角形的两个内角,所以且即,所以即,.故选:.【题目点拨】本题主要考查函数值的大小比较,根据函数奇偶性和单调性之间的关系是解决本题的关键.4、C【解题分析】
根据三视图,可得三棱锥P-ABC的直观图,然后再计算可得.【题目详解】解:根据三视图,可得三棱锥P-ABC的直观图如图所示,其中D为AB的中点,底面ABC.所以三棱锥P-ABC的体积为,,,,,、不可能垂直,即不可能两两垂直,,.三棱锥P-ABC的侧面积为.故正确的为C.故选:C.【题目点拨】本题考查三视图还原直观图,以及三棱锥的表面积、体积的计算问题,属于中档题.5、D【解题分析】
由题意结合函数的图象,求出周期,根据周期公式求出,求出,根据函数的图象过点,求出,即可求得答案【题目详解】由函数图象可知:,函数的图象过点,,则故选【题目点拨】本题主要考查的是的图像的运用,在解答此类题目时一定要挖掘图像中的条件,计算三角函数的周期、最值,代入已知点坐标求出结果6、C【解题分析】
分别求解出集合的具体范围,由集合的交集运算即可求得答案.【题目详解】因为集合,,所以故选:C【题目点拨】本题考查对数函数的定义域求法、一元二次不等式的解法及集合的交集运算,考查基本运算能力.7、B【解题分析】由a1+a3+a5=21得a3+a5+a7=,选B.8、C【解题分析】
把已知等式变形,再由复数代数形式的乘除运算化简得答案.【题目详解】由(1+i)z=|3+4i|,得z,∴z的虚部为.故选C.【题目点拨】本题考查复数代数形式的乘除运算,考查复数的基本概念,是基础题.9、C【解题分析】
首先求出等差数列的首先和公差,然后写出数列即可观察到满足的i的取值集合.【题目详解】设公差为d,由题知,,解得,,所以数列为,故.故选:C.【题目点拨】本题主要考查了等差数列的基本量的求解,属于基础题.10、D【解题分析】
根据题干得到点A坐标为,代入抛物线得到坐标为,再将点代入双曲线得到离心率.【题目详解】因为三角形OAB是等边三角形,设直线OA为,设点A坐标为,代入抛物线得到x=2b,故点A的坐标为,代入双曲线得到故答案为:D.【题目点拨】求双曲线的离心率(或离心率的取值范围),常见有两种方法:①求出,代入公式;②只需要根据一个条件得到关于的齐次式,结合转化为的齐次式,然后等式(不等式)两边分别除以或转化为关于的方程(不等式),解方程(不等式)即可得(的取值范围).11、C【解题分析】
讨论当时,是否恒成立;讨论当恒成立时,是否成立,即可选出正确答案.【题目详解】解:当时,,由开口向上,则恒成立;当恒成立时,若,则不恒成立,不符合题意,若时,要使得恒成立,则,即.所以“”是“恒成立”的充要条件.故选:C.【题目点拨】本题考查了命题的关系,考查了不等式恒成立问题.对于探究两个命题的关系时,一般分成两步,若,则推出是的充分条件;若,则推出是的必要条件.12、C【解题分析】因为fx=lnx2-4x+4x-23=二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】
连续掷两次骰子共有种结果,列出满足条件的结果有11种,利用古典概型即得解【题目详解】由题意知,连续掷两次骰子共有种结果,而满足条件的结果为:共有11种结果,根据古典概型概率公式,可得所求概率.故答案为:【题目点拨】本题考查了古典概型的应用,考查了学生综合分析,数学运算的能力,属于基础题.14、【解题分析】
依题意画图,设,根据圆的直径所对的圆周角为直角,可得,通过勾股定理得,再利用两点间的距离公式即可求出,进而得出点坐标.【题目详解】解:依题意画图,设以为直径的圆被直线所截得的弦长为,且,又因为为圆的直径,则所对的圆周角,则,则为点到直线:的距离.所以,则.又因为点在直线:上,设,则.解得,则.故答案为:【题目点拨】本题考查了直线与圆的位置关系,考查了两点间的距离公式,点到直线的距离公式,是基础题.15、【解题分析】
如图,连接,证明平面平面EFG.因为直线平面EFG,所以点P在直线AC上.当时.线段的长度最小,再求此时的得解.【题目详解】如图,连接,因为E,F,G分别为AB,BC,的中点,所以,平面,则平面.因为,所以同理得平面,又.所以平面平面EFG.因为直线平面EFG,所以点P在直线AC上.在中,,故当时.线段的长度最小,最小值为.故答案为:【题目点拨】本题主要考查空间位置关系的证明,考查立体几何中的轨迹问题,意在考查学生对这些知识的理解掌握水平.16、2【解题分析】
利用AB中有且只有一个元素,可得,可求实数a的值.【题目详解】由题意AB中有且只有一个元素,所以,即.故答案为:.【题目点拨】本题主要考查集合的交集运算,集合交集的运算本质是存同去异,侧重考查数学运算的核心素养.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见解析(2)(3)【解题分析】
(1)若函数有局部对称点,则,即有解,即可求证;(2)由题可得在内有解,即方程在区间上有解,则,设,利用导函数求得的范围,即可求得的范围;(3)由题可得在上有解,即在上有解,设,则可变形为方程在区间内有解,进而求解即可.【题目详解】(1)证明:由得,代入得,则得到关于x的方程,由于且,所以,所以函数必有局部对称点(2)解:由题,因为函数在定义域内有局部对称点所以在内有解,即方程在区间上有解,所以,设,则,所以令,则,当时,,故函数在区间上单调递减,当时,,故函数在区间上单调递增,所以,因为,,所以,所以,所以(3)解:由题,,由于,所以,所以(*)在R上有解,令,则,所以方程(*)变为在区间内有解,需满足条件:,即,得【题目点拨】本题考查函数的局部对称点的理解,利用导函数研究函数的最值问题,考查转化思想与运算能力.18、(1)3;(2).【解题分析】
(1)在中,利用正弦定理即可得到答案;(2)由可得,在中,利用及余弦定理得,解方程组即可.【题目详解】(1)在中,已知,,,由正弦定理,得,解得.(2)因为,所以,解得.在中,由余弦定理得,,即,,故.【题目点拨】本题考查正余弦定理在解三角形中的应用,考查学生的计算能力,是一道中档题.19、(1).(2).【解题分析】
(1)先根据空间直角坐标系,求得向量和向量的坐标,再利用线线角的向量方法求解.(2)分别求得平面BFC1的一个法向量和平面BCC1的一个法向量,再利用面面角的向量方法求解.【题目详解】规范解答(1)因为AB=1,AA1=2,则F(0,0,0),A,C,B,E,所以=(-1,0,0),=记异面直线AC和BE所成角为α,则cosα=|cos〈〉|==,所以异面直线AC和BE所成角的余弦值为.(2)设平面BFC1的法向量为=(x1,y1,z1).因为=,=,则取x1=4,得平面BFC1的一个法向量为=(4,0,1).设平面BCC1的法向量为=(x2,y2,z2).因为=,=(0,0,2),则取x2=得平面BCC1的一个法向量为=(,-1,0),所以cos〈〉==根据图形可知二面角F-BC1-C为锐二面角,所以二面角F-BC1-C的余弦值为.【题目点拨】本题主要考查了空间向量法研究空间中线线角,面面角的求法,还考查了转化化归的思想和运算求解的能力,属于中档题.20、(1)(2)【解题分析】
利用零点分区间法,去掉绝对值符号分组讨论求并集,对恒成立,则,由三角不等式,得求解【题目详解】解:当时,不等式即为,可得或或,解得或或,则原不等式的解集为若对任意、都有,即为,由,当取得等号,则,由,可得,则的取值范围是【题目点拨】本题考查含有两个绝对值符号的不等式解法及利用三角不等式解恒成立问
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年标准土地评估咨询合同版
- 2024年校园配送单位食品安全快速检测项目管理合同3篇
- 2024年度校园文化节合作伙伴赞助合同3篇
- 2024年度水电工程测量与劳务合作协议2篇
- 2024年度环保要求下石灰产品供应与质量保证合同3篇
- 2024年大数据处理与分析软件服务合同范本2篇
- 2024年度城市轨道交通建设特许经营权授权协议3篇
- 2024年度土地开发项目投资合作协议3篇
- 2024年度猪肉品牌营销与推广合同2篇
- 2024年度脱硫石膏处理项目环境评估与监测合同2篇
- 《玉米合理密植技术》课件
- 《不稳定型心绞痛》课件
- 自媒体宣传采购项目竞争性磋商招投标书范本
- 新保密法知识测试题及答案
- 2023年民航东北空管局人员招聘考试真题
- 2025(新统编版)八年级历史上册 第5单元 大单元教学设计
- 《雁门太守行》说课稿
- 2024年《工会法》知识竞赛题库及答案
- 2024年供应链金融服务平台合作协议
- 养老院防恐防暴应急预案
- 2024高考物理一轮复习:牛顿运动定律(测试)(学生版+解析)
评论
0/150
提交评论