版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届贵州省铜仁伟才学校高三下学期月考试卷(三)(4月)数学试题理注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知是两条不重合的直线,是两个不重合的平面,下列命题正确的是()A.若,,,,则B.若,,,则C.若,,,则D.若,,,则2.设为非零实数,且,则()A. B. C. D.3.在精准扶贫工作中,有6名男干部、5名女干部,从中选出2名男干部、1名女干部组成一个扶贫小组分到某村工作,则不同的选法共有()A.60种 B.70种 C.75种 D.150种4.已知圆:,圆:,点、分别是圆、圆上的动点,为轴上的动点,则的最大值是()A. B.9 C.7 D.5.正项等差数列的前和为,已知,则=()A.35 B.36 C.45 D.546.设为虚数单位,则复数在复平面内对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限7.阅读名著,品味人生,是中华民族的优良传统.学生李华计划在高一年级每周星期一至星期五的每天阅读半个小时中国四大名著:《红楼梦》、《三国演义》、《水浒传》及《西游记》,其中每天阅读一种,每种至少阅读一次,则每周不同的阅读计划共有()A.120种 B.240种 C.480种 D.600种8.函数在上的最大值和最小值分别为()A.,-2 B.,-9 C.-2,-9 D.2,-29.设,,,则的大小关系是()A. B. C. D.10.一辆邮车从地往地运送邮件,沿途共有地,依次记为,,…(为地,为地).从地出发时,装上发往后面地的邮件各1件,到达后面各地后卸下前面各地发往该地的邮件,同时装上该地发往后面各地的邮件各1件,记该邮车到达,,…各地装卸完毕后剩余的邮件数记为.则的表达式为().A. B. C. D.11.若为虚数单位,则复数在复平面上对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限12.第七届世界军人运动会于2019年10月18日至27日在中国武汉举行,中国队以133金64银42铜位居金牌榜和奖牌榜的首位.运动会期间有甲、乙等五名志愿者被分配到射击、田径、篮球、游泳四个运动场地提供服务,要求每个人都要被派出去提供服务,且每个场地都要有志愿者服务,则甲和乙恰好在同一组的概率是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知,(,),则=_______.14.若,则的最小值为________.15.在直角坐标系中,直线的参数方程为(为参数),曲线的参数方程为(为参数).(1)求直线和曲线的普通方程;(2)设为曲线上的动点,求点到直线距离的最小值及此时点的坐标.16.已知,则__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数,.(1)当时,求不等式的解集;(2)当时,不等式恒成立,求实数的取值范围.18.(12分)已知矩形中,,E,F分别为,的中点.沿将矩形折起,使,如图所示.设P、Q分别为线段,的中点,连接.(1)求证:平面;(2)求二面角的余弦值.19.(12分)在四棱锥中,是等边三角形,点在棱上,平面平面.(1)求证:平面平面;(2)若,求直线与平面所成角的正弦值的最大值;(3)设直线与平面相交于点,若,求的值.20.(12分)某景点上山共有级台阶,寓意长长久久.甲上台阶时,可以一步走一个台阶,也可以一步走两个台阶,若甲每步上一个台阶的概率为,每步上两个台阶的概率为.为了简便描述问题,我们约定,甲从级台阶开始向上走,一步走一个台阶记分,一步走两个台阶记分,记甲登上第个台阶的概率为,其中,且.(1)若甲走步时所得分数为,求的分布列和数学期望;(2)证明:数列是等比数列;(3)求甲在登山过程中,恰好登上第级台阶的概率.21.(12分)已知函数,函数.(Ⅰ)判断函数的单调性;(Ⅱ)若时,对任意,不等式恒成立,求实数的最小值.22.(10分)如图,在多面体中,四边形是菱形,,,,平面,,,是的中点.(Ⅰ)求证:平面平面;(ⅠⅠ)求直线与平面所成的角的正弦值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解题分析】
根据空间中线线、线面位置关系,逐项判断即可得出结果.【题目详解】A选项,若,,,,则或与相交;故A错;B选项,若,,则,又,是两个不重合的平面,则,故B正确;C选项,若,,则或或与相交,又,是两个不重合的平面,则或与相交;故C错;D选项,若,,则或或与相交,又,是两个不重合的平面,则或与相交;故D错;故选B【题目点拨】本题主要考查与线面、线线相关的命题,熟记线线、线面位置关系,即可求解,属于常考题型.2、C【解题分析】
取,计算知错误,根据不等式性质知正确,得到答案.【题目详解】,故,,故正确;取,计算知错误;故选:.【题目点拨】本题考查了不等式性质,意在考查学生对于不等式性质的灵活运用.3、C【解题分析】
根据题意,分别计算“从6名男干部中选出2名男干部”和“从5名女干部中选出1名女干部”的取法数,由分步计数原理计算可得答案.【题目详解】解:根据题意,从6名男干部中选出2名男干部,有种取法,从5名女干部中选出1名女干部,有种取法,则有种不同的选法;故选:C.【题目点拨】本题考查排列组合的应用,涉及分步计数原理问题,属于基础题.4、B【解题分析】试题分析:圆的圆心,半径为,圆的圆心,半径是.要使最大,需最大,且最小,最大值为的最小值为,故最大值是;关于轴的对称点,,故的最大值为,故选B.考点:圆与圆的位置关系及其判定.【思路点睛】先根据两圆的方程求出圆心和半径,要使最大,需最大,且最小,最大值为的最小值为,故最大值是,再利用对称性,求出所求式子的最大值.5、C【解题分析】
由等差数列通项公式得,求出,再利用等差数列前项和公式能求出.【题目详解】正项等差数列的前项和,,,解得或(舍),,故选C.【题目点拨】本题主要考查等差数列的性质与求和公式,属于中档题.解等差数列问题要注意应用等差数列的性质()与前项和的关系.6、A【解题分析】
利用复数的除法运算化简,求得对应的坐标,由此判断对应点所在象限.【题目详解】,对应的点的坐标为,位于第一象限.故选:A.【题目点拨】本小题主要考查复数除法运算,考查复数对应点所在象限,属于基础题.7、B【解题分析】
首先将五天进行分组,再对名著进行分配,根据分步乘法计数原理求得结果.【题目详解】将周一至周五分为组,每组至少天,共有:种分组方法;将四大名著安排到组中,每组种名著,共有:种分配方法;由分步乘法计数原理可得不同的阅读计划共有:种本题正确选项:【题目点拨】本题考查排列组合中的分组分配问题,涉及到分步乘法计数原理的应用,易错点是忽略分组中涉及到的平均分组问题.8、B【解题分析】
由函数解析式中含绝对值,所以去绝对值并画出函数图象,结合图象即可求得在上的最大值和最小值.【题目详解】依题意,,作出函数的图象如下所示;由函数图像可知,当时,有最大值,当时,有最小值.故选:B.【题目点拨】本题考查了绝对值函数图象的画法,由函数图象求函数的最值,属于基础题.9、A【解题分析】
选取中间值和,利用对数函数,和指数函数的单调性即可求解.【题目详解】因为对数函数在上单调递增,所以,因为对数函数在上单调递减,所以,因为指数函数在上单调递增,所以,综上可知,.故选:A【题目点拨】本题考查利用对数函数和指数函数的单调性比较大小;考查逻辑思维能力和知识的综合运用能力;选取合适的中间值是求解本题的关键;属于中档题、常考题型.10、D【解题分析】
根据题意,分析该邮车到第站时,一共装上的邮件和卸下的邮件数目,进而计算可得答案.【题目详解】解:根据题意,该邮车到第站时,一共装上了件邮件,需要卸下件邮件,则,故选:D.【题目点拨】本题主要考查数列递推公式的应用,属于中档题.11、D【解题分析】
根据复数的运算,化简得到,再结合复数的表示,即可求解,得到答案.【题目详解】由题意,根据复数的运算,可得,所对应的点为位于第四象限.故选D.【题目点拨】本题主要考查了复数的运算,以及复数的几何意义,其中解答中熟记复数的运算法则,准确化简复数为代数形式是解答的关键,着重考查了推理与运算能力,属于基础题.12、A【解题分析】
根据题意,五人分成四组,先求出两人组成一组的所有可能的分组种数,再将甲乙组成一组的情况,即可求出概率.【题目详解】五人分成四组,先选出两人组成一组,剩下的人各自成一组,所有可能的分组共有种,甲和乙分在同一组,则其余三人各自成一组,只有一种分法,与场地无关,故甲和乙恰好在同一组的概率是.故选:A.【题目点拨】本题考查组合的应用和概率的计算,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】
先利用倍角公式及差角公式把已知条件化简可得,平方可得.【题目详解】∵,∴,则,平方可得.故答案为:.【题目点拨】本题主要考查三角恒等变换,倍角公式的合理选择是求解的关键,侧重考查数学运算的核心素养.14、【解题分析】
由基本不等式,可得到,然后利用,可得到最小值,要注意等号取得的条件。【题目详解】由题意,,当且仅当时等号成立,所以,当且仅当时取等号,所以当时,取得最小值.【题目点拨】利用基本不等式求最值必须具备三个条件:①各项都是正数;②和(或积)为定值;③等号取得的条件。15、(1),;(2),.【解题分析】
(1)利用代入消参的方法即可将两个参数方程转化为普通方程;(2)利用参数方程,结合点到直线的距离公式,将问题转化为求解二次函数最值的问题,即可求得.【题目详解】(1)直线的普通方程为.在曲线的参数方程中,,所以曲线的普通方程为.(2)设点.点到直线的距离.当时,,所以点到直线的距离的最小值为.此时点的坐标为.【题目点拨】本题考查将参数方程转化为普通方程,以及利用参数方程求距离的最值问题,属中档题.16、【解题分析】解:由题意可知:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解题分析】
(1)当时,,当或时,,所以可转化为,解得,所以不等式的解集为.(2)因为,所以,所以,即,即.当时,因为,所以,不符合题意.当时,解可得,因为当时,不等式恒成立,所以,所以,解得,所以实数的取值范围为.18、(1)证明见解析(2)【解题分析】
(1)取中点R,连接,,可知中,且,由Q是中点,可得则有且,即四边形是平行四边形,则有,即证得平面.(2)建立空间直角坐标系,求得半平面的法向量:,然后利用空间向量的相关结论可求得二面角的余弦值.【题目详解】(1)取中点R,连接,,则在中,,且,又Q是中点,所以,而且,所以,所以四边形是平行四边形,所以,又平面,平面,所以平面.(2)在平面内作交于点G,以E为原点,,,分别为x,y,x轴,建立如图所示的空间直角坐标系,则各点坐标为,,,所以,,设平面的一个法向量为,则即,取,得,又平面的一个法向量为,所以.因此,二面角的余弦值为【题目点拨】本题考查线面平行的判定,考查利用空间向量求解二面角,考查逻辑推理能力及运算求解能力,难度一般.19、(1)证明见解析(2)(3)【解题分析】
(1)取中点为,连接,由等边三角形性质可得,再由面面垂直的性质可得,根据平行直线的性质可得,进而求证;(2)以为原点,过作的平行线,分别以,,分别为轴,轴,轴建立空间直角坐标系,设,由点在棱上,可设,即可得到,再求得平面的法向量,进而利用数量积求解;(3)设,,则,求得,,即可求得点的坐标,再由与平面的法向量垂直,进而求解.【题目详解】(1)证明:取中点为,连接,因为是等边三角形,所以,因为且相交于,所以平面,所以,因为,所以,因为,在平面内,所以,所以.(2)以为原点,过作的平行线,分别以,,分别为轴,轴,轴建立空间直角坐标系,设,则,,,,因为在棱上,可设,所以,设平面的法向量为,因为,所以,即,令,可得,即,设直线与平面所成角为,所以,可知当时,取最大值.(3)设,则有,得,设,那么,所以,所以.因为,,所以.又因为,所以,,设平面的法向量为,则,即,,可得,即因为在平面内,所以,所以,所以,即,所以或者(舍),即.【题目点拨】本题考查面面垂直的证明,考查空间向量法求线面成角,考查运算能力与空间想象能力.20、见解析【解题分析】
(1)由题可得的所有可能取值为,,,,且,,,,所以的分布列为所以的数学期望.(2)由题可得,所以,又,,所以,所以是以为首项,为公比的等比数列.(3)由(2)可得.21、(1)故函数在上单调递增,在上单调递减;(2).【解题分析】试题分析:(Ⅰ)根据题意得到的解析式和定义域,求导后根据导函数的符号判断单调性.(Ⅱ)分析题意可得
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 电梯用齿轮传动装置相关项目建议书
- 抛光铁丹相关项目实施方案
- 手机软件设计与用户体验优化教程
- 浴盐项目可行性实施报告
- 五年级英语下册 Unit 2单元话题拓展阅读“出行方式”(含答案)译林版三起
- Unit6语法(复习讲义)-2023-2024学年六年级英语上册单元速记·巧练(人教PEP版)
- Unit 5 语音(复习讲义)-2023-2024学年六年级英语上册单元速记·巧练(译林版三起)
- 交互综合英语(23-24-1)学习通超星期末考试答案章节答案2024年
- M6U1课文知识复习+巩固练习-2023-2024学年六年级英语上册单元速记·巧练(外研版三起)
- 共享经济平台车辆调度优化预案
- 我的公共关系学课件
- 供需双方框架性合作协议书
- 孩子归女方抚养承诺书
- 路基施工质量控制要点
- 会计学原理方法与中国情境案例潘立新课后参考答案
- 篮球赛活动经费申请报告
- 鼻饲患者护理精选PPT
- 通用车辆抵押借款合同书范本
- 观测墩浇筑及观测交通施工方案
- 桂工10级资勘优秀灌阳实习报告
- 【药剂】11第十一章 新药的临床药物代谢动力学评价-2015
评论
0/150
提交评论