呼伦贝尔市重点中学2023-2024学年八年级数学第一学期期末考试模拟试题含解析_第1页
呼伦贝尔市重点中学2023-2024学年八年级数学第一学期期末考试模拟试题含解析_第2页
呼伦贝尔市重点中学2023-2024学年八年级数学第一学期期末考试模拟试题含解析_第3页
呼伦贝尔市重点中学2023-2024学年八年级数学第一学期期末考试模拟试题含解析_第4页
呼伦贝尔市重点中学2023-2024学年八年级数学第一学期期末考试模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

呼伦贝尔市重点中学2023-2024学年八年级数学第一学期期末考试模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.小明家下个月的开支预算如图所示,如果用于衣服上的支是200元,则估计用于食物上的支出是()A.200元 B.250元 C.300元 D.3502.下列分式的约分中,正确的是()A.=- B.=1-y C.= D.=3.为参加“爱我家园”摄影赛,小明同学将参与植树活动的照片放大为长,宽的形状,又精心在四周加上了宽的木框,则这幅摄影作品所占的面积是()A. B.C. D.4.下列分式中,无论x取何值,分式总有意义的是()A. B. C. D.5.下列方程中是二元一次方程的是()A. B.C. D.6.如图,将周长为8的△ABC沿BC方向平移1个单位得到△DEF,则四边形ABFD的周长是()A.8 B.10 C.12 D.147.如图,把△ABC纸片沿DE折叠,当点A落在四边形BCDE内部时,则∠A与∠1+∠2之间有一种数量关系始终保持不变.请试着找一找这个规律,你发现的规律是()A.∠A=∠1+∠2 B.2∠A=∠1+∠2C.3∠A=2∠1+∠2 D.3∠A=2(∠1+∠2)8.一艘轮船在静水中的最大航速为30千米/时,它沿江以最大航速顺流航行100千米所用时间,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?设江水的流速为千米/时,则可列方程()A. B.C. D.9.一次函数满足,且随的增大而减小,则此函数的图象不经过()A.第一象限 B.第二象限 C.第三象限 D.第四象限10.下列各数中,无理数是()A.﹣3 B.0.3 C. D.0二、填空题(每小题3分,共24分)11.现有一个长方形纸片,其中.如图所示,折叠纸片,使点落在边上的处,折痕为,当点在上移动时,折痕的端点、也随之移动.若限定、分别在、边上移动,则点在边上可移动的最大距离为_________.12.在平面直角坐标系中,已知一次函数y=﹣2x+1的图象经过A(a,m),B(a+1,n)两点,则m_____n.(填“>”或“<”)13.用反证法证明“等腰三角形的底角是锐角”时,首先应假设_____14.如图,△ABC为等边三角形,D、E分别是AC、BC上的点,且AD=CE,AE与BD相交于点P,则∠BPE=_______________.15.等腰三角形有一个外角是100°,那么它的的顶角的度数为_____________.16.用四舍五入法,对3.5952取近似值,精确到0.01,结果为______.17.若分式的值为0,则x=_____________.18.已知某地的地面气温是20℃,如果每升高1000m气温下降6℃,则气温t(℃)与高度h(m)的函数关系式为_____.三、解答题(共66分)19.(10分)某商场计划购进、两种新型节能台灯共盏,这两种台灯的进价、售价如表所示:()若商场预计进货款为元,则这两种台灯各购进多少盏?()若商场规定型台灯的进货数量不超过型台灯数量的倍,应怎样进货才能使商场在销售完这批台灯时获利最多?此时利润为多少元?20.(6分)为响应稳书记“足球进校园”的号召,某学校在某商场购买甲、乙两种不同足球,购实甲种足球共花费2000元,购买乙种足球共花费1400元,购买甲种是球数量是购类乙种足球数量的2倍,且购买一个乙种足球比购买一个甲种足球多花20元.(1)求这间商场出售每个甲种足球、每个乙种足球的售价各是多少元;(2)按照实际需要每个班须配备甲足球2个,乙种足球1个,购买的足球能够配备多少个班级?(3)若另一学校用3100元在这商场以同样的售价购买这两种足球,且甲种足球与乙种足球的个数比为2:3,求这学校购买这两种足球各多少个?21.(6分)计算:(1)﹣22×(π﹣3.14)0﹣|﹣5|×(﹣1)2019(2)3x2y2﹣4x3y2÷(﹣2x)+(﹣3xy)222.(8分)如图,在平面直角坐标系中,点为坐标原点,已知三个定点坐标分别为,,.(1)画出关于轴对称的,点的对称点分别是点,则的坐标:(_________,_________),(_________,_________),(_________,_________);(2)画出点关于轴的对称点,连接,,,则的面积是___________.23.(8分)如图,对于边长为2的等边三角形,请建立适当的平面直角坐标系,并写出各个顶点的坐标.24.(8分)如图,是等边三角形,为上两点,且,延长至点,使,连接.(1)如图1,当两点重合时,求证:;(2)延长与交于点.①如图2,求证:;②如图3,连接,若,则的面积为______________.25.(10分)甲、乙两个工程队计划修建一条长15千米的乡村公路,已知甲工程队每天比乙工程队每天多修路0.5千米,乙工程队单独完成修路任务所需天数是甲工程队单独完成修路任务所需天数的1.5倍.(1)求甲、乙两个工程队每天各修路多少千米?(2)若甲工程队每天的修路费用为0.5万元,乙工程队每天的修路费用为0.4万元,要使两个工程队修路总费用不超过5.2万元,甲工程队至少修路多少天?26.(10分)受气候的影响,某超市蔬菜供应紧张,需每天从外地调运蔬菜1000斤.超市决定从甲、乙两大型蔬菜棚调运蔬菜,已知甲蔬菜棚每天最多可调出800斤,乙蔬菜棚每天最多可调运600斤,从两蔬菜棚调运蔬菜到超市的路程和运费如下表:到超市的路程(千米)运费(元/斤·千米)甲蔬菜棚1200.03乙蔬菜棚800.05(1)若某天调运蔬菜的总运费为3840元,则从甲、乙两蔬菜棚各调运了多少斤蔬菜?(2)设从甲蔬菜棚调运蔬菜斤,总运费为元,试写出与的函数关系式,怎样安排调运方案才能使每天的总运费最省?

参考答案一、选择题(每小题3分,共30分)1、C【解析】试题分析:先求出总支出,再根据用于食物上的支出占总支出的30%即可得出结论.解:∵用于衣服上的支是200元,占总支出的20%,∴总支出==1000(元),∴用于食物上的支出=1000×30%=300(元).故选C.考点:扇形统计图.2、C【分析】分别根据分式的基本性质进行化简得出即可.【详解】A.=,此选项约分错误;B.不能约分,此选项错误;C.==,此选项正确;D.==,此选项错误;故选:C.【点睛】本题考查了分式的约分,在约分时要注意约掉的是分子分母的公因式.3、D【分析】此题涉及面积公式的运用,解答时直接运用面积的公式求出答案.【详解】根据题意可知,这幅摄影作品占的面积是a2+4(a+4)+4(a+4)−4×4=故选:D.【点睛】列代数式的关键是正确理解文字语言中的关键词,找到其中的数量关系列出式子.4、B【解析】根据分母不为零分式有意义,可得答案.【详解】A、x=0时分式无意义,故A错误;B、无论x取何值,分式总有意义,故B正确;C、当x=-1时,分式无意义,故C错误;D、当x=0时,分式无意义,故D错误;故选B.【点睛】本题考查了分式有意义的条件,分母不为零分式有意义.5、B【分析】含有两个未知数,并且含有未知数的项的次数都是1的整式方程叫做二元一次方程.【详解】解:化简得,最高次是2次,故A选项错误;是二元一次方程,故B选项正确;不是整式方程,故C选项错误;最高次是2次,故D选项错误.故选:B【点睛】本题主要考查的是二元一次方程的概念,正确的掌握二元一次方程的概念是解题的关键.6、B【分析】根据平移的基本性质,得出四边形ABFD的周长=AD+AB+BF+DF=1+AB+BC+1+AC即可得出答案.【详解】根据题意,将周长为8的△ABC沿边BC向右平移1个单位得到△DEF,∴AD=1,BF=BC+CF=BC+1,DF=AC;又∵AB+BC+AC=8,∴四边形ABFD的周长=AD+AB+BF+DF=1+AB+BC+1+AC=1.故选:B.【点睛】此题主要考查平移的性质,解题的关键是熟知平移的特点及周长的定义.7、B【分析】根据四边形的内角和为360°、平角的定义及翻折的性质,就可求出1∠A=∠1+∠1这一始终保持不变的性质.【详解】∵在四边形ADA′E中,∠A+∠A′+∠ADA′+∠AEA′=360°,

则1∠A+(180°-∠1)+(180°-∠1)=360°,

∴可得1∠A=∠1+∠1.

故选B【点睛】本题主要考查四边形的内角和及翻折的性质特点,解决本题的关键是熟记翻折的性质.8、A【解析】设江水的流速为x千米/时,.故选A.点睛:点睛:本题主要考查分式方程的实际问题的应用,解题的关键是读懂题目的意思,根据题目给出的条件,设出未知数,分别找出顺水和溺水对应的时间,找出合适的等量关系,列出方程即可.9、A【详解】根据y随x的增大而减小得:k<0,又kb>0,则b<0,故此函数的图象经过第二、三、四象限,即不经过第一象限.故选A.【点睛】考点是一次函数图象与系数的关系.10、C【分析】根据无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数,逐一判断即可得答案.【详解】A.﹣3是整数,属于有理数,故该选项不符合题意,B.0.3是有限小数,属于有理数,故该选项不符合题意,C.是无理数,故该选项符合题意,D.0是整数,属于有理数,故该选项不符合题意.故选:C.【点睛】此题主要考查了无理数的定义,无限不循环小数为无理数.如π、8080080008…(每两个8之间依次多1个0)等形式,注意带根号的要开不尽方才是无理数.二、填空题(每小题3分,共24分)11、1【解析】根据翻折的性质,可得BA′与AP的关系,根据线段的和差,可得A′C,根据勾股定理,可得A′C,根据线段的和差,可得答案.【详解】①当P与B重合时,BA′=BA=6,CA′=BC−BA′=10−6=1,②当Q与D重合时,由勾股定理,得CA′==8,CA′最远是8,CA′最近是1,点A′在BC边上可移动的最大距离为8−1=1,故答案为1.【点睛】本题考查了翻折变换,利用了翻折的性质,勾股定理,分类讨论是解题关键.12、>【解析】将点A,点B坐标代入可求m,n的值,即可比较m,n的大小.【详解】解:∵一次函数y=﹣2x+1的图象经过A(a,m),B(a+1,n)两点,∴m=﹣2a+1,n=﹣2a﹣1∴m>n故答案为>【点睛】本题考查了一次函数图象上点的坐标特征,熟练掌握函数图象上的点的坐标满足函数解析式.13、等腰三角形的底角是钝角或直角【解析】根据反证法的第一步:假设结论不成立设,可以假设“等腰三角形的两底都是直角或钝角”.

故答案是:等腰三角形的两底都是直角或钝角.14、60°【分析】由等边三角形的性质得出AB=CA,∠BAD=∠ACE=60°,由SAS即可证明△ABD≌△CAE,得到∠ABD=∠CAE,利用外角∠BPE=∠BAP+∠ABD,即可解答.【详解】解:∵△ABC是等边三角形,∴AB=CA,∠BAD=∠ACE=60°,在△ABD和△CAE中,,∴△ABD≌△CAE(SAS),∴∠ABD=∠CAE,∵∠BPE=∠BAP+∠ABD,∴∠BPE=∠BAP+∠CAE=∠BAC=60°.故答案为:60°.【点睛】本题考查了等边三角形的性质、全等三角形的判定与性质;熟练掌握等边三角形的性质,证明三角形全等是解决问题的关键.15、80°或20°【分析】根据等腰三角形的性质,已知等腰三角形有一个外角为100°,可知道三角形的一个内角.但没有明确是顶角还是底角,所以要根据情况讨论顶角的度数.【详解】等腰三角形有一个外角是100°即是已知一个角是80°,这个角可能是顶角,也可能是底角,

当是底角时,顶角是180°-80°-80°=20°,因而顶角的度数为80°或20°.

故填80°或20°.【点睛】本题考查了等腰三角形的性质;若题目中没有明确顶角或底角的度数,做题时要注意分情况进行讨论,这是十分重要的,也是解答问题的关键.16、3.1【分析】根据近似数的精确度把千分位上的数字5进行四舍五入即可.【详解】解:3.5952≈3.1(精确到0.01).

故答案为3.1.【点睛】本题考查近似数和有效数字:经过四舍五入得到的数为近似数;从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.17、2【分析】分式的值为零,即在分母的条件下,分子即可.【详解】解:由题意知:分母且分子,∴,故答案为:.【点睛】本题考查了分式为0的条件,即:在分母有意义的前提下分子为0即可.18、t=﹣0.006h+1【解析】根据题意得到每升高1m气温下降0.006℃,由此写出关系式即可.【详解】∵每升高1000m气温下降6℃,∴每升高1m气温下降0.006℃,∴气温t(℃)与高度h(m)的函数关系式为t=﹣0.006h+1,故答案为:t=﹣0.006h+1.【点睛】本题考查了函数关系式,正确找出气温与高度之间的关系是解题的关键.三、解答题(共66分)19、(1)购进型台灯盏,型台灯25盏;(2)当商场购进型台灯盏时,商场获利最大,此时获利为元.【解析】试题分析:(1)设商场应购进A型台灯x盏,然后根据关系:商场预计进货款为3500元,列方程可解决问题;(2)设商场销售完这批台灯可获利y元,然后求出y与x的函数关系式,然后根据一次函数的性质和自变量的取值范围可确定获利最多时的方案.试题解析:解:(1)设商场应购进A型台灯x盏,则B型台灯为(100﹣x)盏,根据题意得,30x+50(100﹣x)=3500,解得x=75,所以,100﹣75=25,答:应购进A型台灯75盏,B型台灯25盏;(2)设商场销售完这批台灯可获利y元,则y=(45﹣30)x+(70﹣50)(100﹣x),=15x+2000﹣20x,=﹣5x+2000,∵B型台灯的进货数量不超过A型台灯数量的3倍,∴100﹣x≤3x,∴x≥25,∵k=﹣5<0,∴x=25时,y取得最大值,为﹣5×25+2000=1875(元)答:商场购进A型台灯25盏,B型台灯75盏,销售完这批台灯时获利最多,此时利润为1875元.考点:1.一元一次方程的应用;2.一次函数的应用.20、(1)甲种足球需50元,乙种足球需70元;(2)20个班级;(3)甲种足球40个,乙种足球60个.【分析】(1)设购买一个甲种足球需x元,则购买一个乙种足球需(x+20)元,根据题意列出分式方程即可求出结论;(2)根据题意,求出该校购买甲种足球和乙种足球的数量即可得出结论;(3)设这学校购买甲种足球2x个,乙种足球3x个,根据题意列出一元一次方程即可求出结论.【详解】解:(1)设购买一个甲种足球需x元,则购买一个乙种足球需(x+20)元,可得:解得:x=50经检验x=50是原方程的解且符合题意答:购买一个甲种足球需50元,则购买一个乙种足球需70元;(2)由(1)可知该校购买甲种足球==40个,购买乙种足球20个,∵每个班须配备甲足球2个,乙种足球1个,答:购买的足球能够配备20个班级;(3)设这学校购买甲种足球2x个,乙种足球3x个,根据题意得:2x×50+3x×70=3100解得:x=20∴2x=40,3x=60答:这学校购买甲种足球40个,乙种足球60个.【点睛】此题考查的是分式方程的应用和一元一次方程的应用,掌握实际问题中的等量关系是解决此题的关键.21、(1)1;(2)14x2y2【分析】(1)直接利用零指数幂的性质以及绝对值的性质分别化简得出答案;(2)直接利用整式的乘除运算法则化简得出答案.【详解】解:(1)原式=-4×1-5×(-1)=-4+5=1;(2)原式=3x2y2+2x2y2+9x2y2=14x2y2.【点睛】此题主要考查了整式的乘除运算,正确掌握相关运算法则是解题关键.22、(1)画图见解析;-4,-1;-3,-3;-1,-2;(2)画图见解析,4.【分析】(1)分别作出点A、B、C关于x轴的对称点,再顺次连接可得;(2)作出点C关于y轴的对称点,然后连接得到三角形,根据面积公式计算可得.【详解】(1)如图所示,即为所求,;(2)如图所示,的面积是【点睛】本题主要考查作图-轴对称变换,解题的关键是熟练掌握轴对称变换的定义和性质.23、见解析【分析】以BC所在的直线为x轴,以BC边上的高所在的直线为y轴,建立平面直角坐标系,则BO=CO,再根据勾股定理求出AO的长度,点A、B、C的坐标即可写出.【详解】如图,以BC所在是直线为x轴,以过A垂直于BC的直线为y轴,建立坐标系,O为原点,∵△ABC是正△ABC,∴O为BC的中点,而△ABC的边长为2,∴BO=CO=1,在Rt△AOB中,AB2=AO2+BO2,∴AO=,∴B(−1,0),C(1,0),A(0,).【点睛】本题主要考查坐标与图形的性质,等边三角形的性质,勾股定理的运用,建立适当的平面直角坐标系是解题的关键.24、(1)见解析;(1)①见解析;②1.【分析】(1)当D、E两点重合时,则AD=CD,然后由等边三角形的性质可得∠CBD的度数,根据等腰三角形的性质和三角形的外角性质可得∠F的度数,于是可得∠CBD与∠F的关系,进而可得结论;(1)①过点E作EH∥BC交AB于点H,连接BE,如图4,则易得△AHE是等边三角形,根据等边三角形的性质和已知条件可得EH=CF,∠BHE=∠ECF=110°,BH=EC,于是可根据SAS证明△BHE≌△ECF,可得∠EBH=∠FEC,易证△BAE≌△BCD,可得∠ABE=∠CBD,从而有∠FEC=∠CBD,然后根据三角形的内角和定理可得∠BGE=∠BCD,进而可得结论;②易得∠BEG=90°,于是可知△BEF是等腰直角三角形,由30°角的直角三角形的性质和等腰直角三角形的性质易求得BE和BF的长,过点E作EM⊥BF于点F,过点C作CN⊥EF于点N,如图5,则△BEM、△EMF和△CFN都是等腰直角三角形,然后利用等腰直角三角形的性质和30°角的直角三角形的性质可依次求出BM、MC、CF、FN、CN、GN的长,进而可得△GCN也是等腰直角三角形,于是有∠BCG=90°,故所求的△BCG的面积=,而BC和CG可得,问题即得解决.【详解】解:(1)∵△ABC是等边三角形,∴∠ABC=∠ACB=60°,当D、E两点重合时,则AD=CD,∴,∵,∴∠F=∠CDF,∵∠F+∠CDF=∠ACB=60°,∴∠F=30°,∴∠CBD=∠F,∴;(1)①∵△ABC是等边三角形,∴∠ABC=∠ACB=60°,AB=AC,过点E作EH∥BC交AB于点H,连接BE,如图4,则∠AHE=∠ABC=60°,∠AEH=∠ACB=60°,∴△AHE是等边三角形,∴AH=AE=HE,∴BH=EC,∵,CD=CF,∴EH=CF,又∵∠BHE=∠ECF=110°,∴△BHE≌△ECF(SAS),∴∠EBH=∠FEC,EB=EF,∵BA=BC,∠A=∠ACB=60°,AE=CD,∴△BAE≌△BCD(SAS),∴∠ABE=∠CBD,∴∠FEC=∠CBD,∵∠EDG=∠BDC,∴∠BGE=∠BCD=60°;②∵∠BGE=60°,∠EBD=30°,∴∠BEG=90°,∵EB=EF,∴∠F=∠EBF=45°,∵∠EBG=30°,BG=4,∴EG=1,BE=1,∴BF=,,过点E作EM⊥BF于点F,过点C作CN⊥EF于点N,如图5,则△BEM、△EMF和△CFN都是等腰直角三角形,∴,∵∠ACB=60°,∴∠MEC=30°,∴,∴,,∴,∴,∴,∴∠GCF=90°=∠GCB,∴,∴△BCG的面积=.故答案为:1.【点睛】本题考查了等腰三角形与等边三角形的判定和性质、全等三角形的判定与性质、等腰直角三角形的判定与性质、30°角的直角三角形的性质和勾股定理等知识,涉及的知识点多、难度较大,正确添加辅助线、熟练掌握全等三角形的判定与性质是解①题的关键,灵活应用等腰直角三角形的性质和30°角的直角三角形的性质解②题的关键.25、(1)甲每天修路1.5千米,则乙每天修路1千米;(2)甲工程队至少修路8天.【分析】(1)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论