河南省周口市川汇区2024届八上数学期末教学质量检测模拟试题含解析_第1页
河南省周口市川汇区2024届八上数学期末教学质量检测模拟试题含解析_第2页
河南省周口市川汇区2024届八上数学期末教学质量检测模拟试题含解析_第3页
河南省周口市川汇区2024届八上数学期末教学质量检测模拟试题含解析_第4页
河南省周口市川汇区2024届八上数学期末教学质量检测模拟试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河南省周口市川汇区2024届八上数学期末教学质量检测模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.如图,CE是△ABC的外角∠ACD的平分线,若∠B=35°,∠ACE=60°,则∠A=()A.35° B.95° C.85° D.75°2.下列长度的三条线段,哪一组能构成三角形()A. B. C. D.3.如图,在矩形ABCD中,O为AC中点,EF过O点且EF⊥AC分别交DC于F,交AB于E,若点G是AE中点且∠AOG=30°,则下列结论正确的个数为()(1)△OGE是等边三角形;(2)DC=3OG;(3)OG=BC;(4)S△AOE=S矩形ABCDA.1个 B.2个 C.3个 D.4个4.在一张长为10cm,宽为8cm的矩形纸片上,要剪下一个腰长为5cm的等腰三角形(要求:等腰三角形的一个顶点与矩形的顶点A重合,其余的两个顶点都在矩形边上),这个等腰三角形有几种剪法()A.1 B.2 C.3 D.45.已知:AB=AD,∠C=∠E,CD、BE相交于O,下列结论:(1)BC=DE,(2)CD=BE,(3)△BOC≌△DOE;其中正确的是()A.0个 B.1个 C.2个 D.3个6.64的平方根是()A.8 B. C. D.327.张老师和李老师同时从学校出发,步行15千米去县城购买书籍,张老师比李老师每小时多走1千米,结果比李老师早到半小时,两位老师每小时各走多少千米?设李老师每小时走x千米,依题意,得到的方程是()A. B. C. D.8.若三角形的三边长分别为x、2x、9,则x的取值范围是()A.3<x<9 B.3<x<15 C.9<x<15 D.x>159.对不等式进行变形,结果正确的是()A. B. C. D.10.下列说法正确的是()A.带根号的数都是无理数B.数轴上的每一个点都表示一个有理数C.一个正数只有一个平方根D.实数的绝对值都不小于零11.如图,在△ABC中,∠B=∠C=60°,点D为AB边的中点,DE⊥BC于E,若BE=1,则AC的长为()A.2 B. C.4 D.12.师徒两人做工艺品,已知徒弟每天比师傅少做6个,徒弟做40个所用的时间与师傅做60个所用的时间相同.如果设徒弟每天做x个,那么可列方程为()A. B. C. D.二、填空题(每题4分,共24分)13.等腰三角形中,两条边长分别为4cm和5cm,则此三角形的周长为____cm.14.如果一个数的平方根和它的立方根相等,则这个数是______.15.已知关于x,y的二元一次方程组的解满足x﹣y=3,则m的值为_____16.如图,等边三角形中,为的中点,平分,且交于.如果用“三角形三条角平分线必交于一点”来证明也一定平分,那么必须先要证明__________.17.已知,则的值是______.18.如图,点在等边的边上,,射线,垂足为点,点是射线上一动点,点是线段上一动点,当的值最小时,,则的长为___________________.三、解答题(共78分)19.(8分)如图,正方形的对角线交于点点,分别在,上()且,,的延长线交于点,,的延长线交于点,连接.(1)求证:.(2)若正方形的边长为4,为的中点,求的长.20.(8分)如图,△ABC的顶点坐标分别为A(2,3),B(1,1),C(3,2).(1)将△ABC向下平移4个单位长度,画出平移后的△ABC;(2)画出△ABC关于y轴对称的△ABC.并写出点A,B,C的坐标.21.(8分)我们定义:对角线互相垂直的四边形叫做垂美四边形.(1)如图1,垂美四边形ABCD的对角线AC,BD交于O.求证:AB2+CD2=AD2+BC2;(2)如图2,分别以Rt△ACB的直角边AC和斜边AB为边向外作正方形ACFG和正方形ABDE,连结BE,CG,GE.①求证:四边形BCGE是垂美四边形;②若AC=4,AB=5,求GE的长.22.(10分)在平面直角坐标系中,为原点,点,点,把绕点逆时针旋转,得,点旋转后的对应点为、,记旋转角为.如图,若,求的长.23.(10分)某学校为了调查学生对课改实验的满意度,随机抽取了部分学生作问卷调查:用“A”表示“很满意“,“B”表示“满意”,“C”表示“比较满意”,“D”表示“不满意”.工作人员根据问卷调查数据绘制了两幅不完整的统计图,请你根据统计图提供的信息解答以下问题:(1)本次问卷调查,共调查了多少名学生?(2)将条形统计图中的B等级补完整;(3)求出扇形统计图中,D等级所对应扇形的圆心角度数.24.(10分)如图某船在海上航行,在A处观测到灯塔B在北偏东60°方向上,该船以每小时15海里的速度向东航行到达C处,观测到灯塔B在北偏东30°方向上,继续向东航行到D处,观测到灯塔B在北偏西30°方向上,当该船到达D处时恰与灯塔B相距60海里.(1)判断BCD的形状;(2)求该船从A处航行至D处所用的时间.25.(12分)如图,,是边的中点,于,于.(1)求证:;(2)若,,求的周长.26.建立模型:如图1,已知△ABC,AC=BC,∠C=90°,顶点C在直线l上.实践操作:过点A作AD⊥l于点D,过点B作BE⊥l于点E,求证:△CAD≌△BCE.模型应用:(1)如图1,在直角坐标系中,直线l1:y=x+4与y轴交于点A,与x轴交于点B,将直线l1绕着点A顺时针旋转45°得到l1.求l1的函数表达式.(1)如图3,在直角坐标系中,点B(8,6),作BA⊥y轴于点A,作BC⊥x轴于点C,P是线段BC上的一个动点,点Q(a,1a﹣6)位于第一象限内.问点A、P、Q能否构成以点Q为直角顶点的等腰直角三角形,若能,请求出此时a的值,若不能,请说明理由.

参考答案一、选择题(每题4分,共48分)1、C【分析】根据CE是△ABC的外角∠ACD的平分线,∠ACE=60°,得出∠ACD=120°;再根据三角形的外角等于与它不相邻的两个内角和即可求解.【详解】解:∵CE是△ABC的外角∠ACD的平分线,∠ACE=60°∴∠ACD=2∠ACE=120°∵∠ACD=∠B+∠A∴∠A=∠ACD-∠B=120°-35°=85°故选:C.【点睛】本题考查了三角形外角性质,角平分线定义的应用,注意:三角形的一个外角等于和它不相邻的两个内角的和.2、B【解析】由题意直接根据三角形的三边关系进行分析判断即可.【详解】解:根据三角形任意两边的和大于第三边,得A、2+2=4<5,不能组成三角形;B、3+4=7>5,能组成三角形;C、2+6=8<10,不能组成三角形;D、4+5=9,不能组成三角形.故选:B.【点睛】本题考查能够组成三角形三边的条件,用两条较短的线段相加,如果大于最长的那条线段就能够组成三角形.3、C【分析】根据直角三角形斜边上的中线等于斜边的一半可得OG=AG=GE=AE,再根据等边对等角可得∠OAG=30°,根据直角三角形两锐角互余求出∠GOE=60°,从而判断出△OGE是等边三角形,判断出(1)正确;设AE=2a,根据等边三角形的性质表示出OE,利用勾股定理列式求出AO,从而得到AC,再求出BC,然后利用勾股定理列式求出AB=3a,从而判断出(2)正确,(3)错误;再根据三角形的面积和矩形的面积列式求出判断出(4)正确.【详解】解:∵EF⊥AC,点G是AE中点,∴OG=AG=GE=AE,∵∠AOG=30°,∴∠OAG=∠AOG=30°,∠GOE=90°﹣∠AOG=90°﹣30°=60°,∴△OGE是等边三角形,故(1)正确;设AE=2a,则OE=OG=a,由勾股定理得,AO===a,∵O为AC中点,∴AC=2AO=2a,∴BC=AC=×2a=a,在Rt△ABC中,由勾股定理得,AB==3a,∵四边形ABCD是矩形,∴CD=AB=3a,∴DC=3OG,故(2)正确;∵OG=a,BC=a,∴OG≠BC,故(3)错误;∵S△AOE=a•a=a2,SABCD=3a•a=3a2,∴S△AOE=SABCD,故(4)正确;综上所述,结论正确是(1)(2)(4),共3个.故选:C.【点睛】本题考查矩形的性质,直角三角形斜边上的中线等于斜边的一半,等边三角形的判定,含30°角的直角三角形.熟练掌握相关定理,并能通过定理推出线段之间的数量关系是解决此题的关键.4、B【解析】有两种情况:①当∠A为顶角时,如图1,此时AE=AF=5cm.②当∠A为底角时,如图2,此时AE=EF=5cm.故选B.5、D【分析】根据已知条件证明△ABE≌△ADC,即可依次证明判定.【详解】∵AB=AD,∠C=∠E,又∠A=∠A∴△ABE≌△ADC(AAS)∴AE=AC,CD=BE,(2)正确;∵AB=AD∴AC-AB=AE-AD,即BC=DE,(1)正确;∵∠BOC=∠DOE,∠C=∠E∴△BOC≌△DOE(AAS),故(3)正确故选D.【点睛】此题主要考查全等三角形的判定与性质,解题的关键是熟知全等三角形的判定定理.6、C【分析】根据平方根的定义:如果一个数的平方等于,这个数就叫做的平方根,即可得解.【详解】由已知,得64的平方根是,故选:C.【点睛】此题主要考查对平方根的理解,熟练掌握,即可解题.7、B【解析】设小李每小时走x千米,则小张每小时走(x+1)千米,根据题意可得等量关系:小李所用时间-小张所用时间=半小时,根据等量关系列出方程即可.【详解】解:设小李每小时走x千米,依题意得:故选B.【点睛】此题主要考查了由实际问题抽象出分式方程,关键是正确理解题意,找出题目中的等量关系列出方程.8、A【分析】根据三角形的三边关系列出不等式组即可求出x的取值范围.【详解】∵一个三角形的三边长分别为x,2x和1,∴,∴3<x<1.故选:A.【点睛】考查了三角形的三边关系,即任意两边之和大于第三边,任意两边之差小于第三边.9、B【分析】根据不等式的基本性质进行逐一判断即可得解.【详解】A.不等式两边同时减b得,A选项错误;B.不等式两边同时减2得,B选项正确;C.不等式两边同时乘2得,C选项错误;D.不等式两边同时乘得,不等式两边再同时加1得,D选项错误,故选:B.【点睛】本题主要考查了不等式的基本性质,注意不等式两边同时乘或除以一个负数,要改变不等号的方向.10、D【分析】根据无理数的定义、数轴与有理数的关系、平方根的性质、绝对值的性质逐一判断即可【详解】A.带根号的数不一定是无理数,故此选项错误;B.数轴上的每一个点都表示一个实数,故此选项错误;C.一个正数有2个平方根,故此选项错误;D.实数的绝对值都不小于零,正确.故选:D.【点睛】本题考查了无理数的定义、数轴与有理数的关系、平方根的性质、绝对值的性质,熟练掌握相关的知识是解题的关键11、C【详解】解:∵∠B=60°,DE⊥BC,

∴BD=2BE=2,

∵D为AB边的中点,

∴AB=2BD=4,

∵∠B=∠C=60°,

∴△ABC为等边三角形,

∴AC=AB=4,

故选:C.12、A【分析】根据题目中数量关系徒弟做40个所用的时间与师傅做60个所用的时间相同,可以列出相应的分式方程,本题得以解决.【详解】解:由题意可得,

故选:A.【点睛】本题考查由实际问题抽象出分式方程,解答本题的关键是明确题意,列出相应的分式方程.二、填空题(每题4分,共24分)13、13或1【分析】分是腰长和是腰长两种情况,再根据等腰三角形的定义可得出此三角形的三边长,然后根据三角形的周长公式即可得.【详解】由题意,分以下两种情况:(1)当是腰长时,此三角形的三边长分别为,满足三角形的三边关系定理,能组成三角形,则此三角形的周长为;(2)当是腰长时,此三角形的三边长分别为,满足三角形的三边关系定理,能组成三角形,则此三角形的周长为;综上,此三角形的周长为或,故答案为:13或1.【点睛】本题考查了等腰三角形的定义,难点在于分情况讨论并利用三角形的三边关系判断是否能组成三角形.14、1【解析】试题解析:平方根和它的立方根相等的数是1.15、1【分析】②−①得到x−y=4−m,代入x−y=3中计算即可求出m的值.【详解】解:,②−①得:x−y=4−m,∵x−y=3,∴4−m=3,解得:m=1,故答案为1【点睛】本题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.16、AD是∠BAC的角平分线【分析】根据等边三角形的三线合一定理,即可得到答案.【详解】解:∵等边三角形中,为的中点,∴AD是∠BAC的角平分线,∵平分,∴点E是等边三角形的三条角平分线的交点,即点E为三角形的内心,∴也一定平分;故答案为:AD是∠BAC的角平分线.【点睛】本题考查了等边三角形的性质,以及三线合一定理,解题的关键是熟练掌握三线合一定理进行解题.17、1【分析】将变形为,代入数据求值即可.【详解】故答案为:1.【点睛】本题考查完全平方公式的变形求值,熟练掌握完全平方公式的变形是解题的关键.18、1【分析】作出点M关于CD的对称点M1,然后过点M1作M1N⊥AB于N,交CD于点P,连接MP,根据对称性可得MP=M1P,MC=M1C,然后根据垂线段最短即可证出此时最小,然后根据等边三角形的性质可得AC=BC,∠B=60°,利用30°所对的直角边是斜边的一半即可求出BM1,然后求出BC即可求出AC.【详解】解:作出点M关于CD的对称点M1,然后过点M1作M1N⊥AB于N,交CD于点P,连接MP,如下图所示根据对称性质可知:MP=M1P,MC=M1C此时=M1P+NP=M1N,根据垂线段最短可得此时最小,且最小值为M1N的长∵△ABC为等边三角形∴AC=BC,∠B=60°∴∠M1=90°-∠B=30°∵,当的值最小时,,∴在Rt△BM1N中,BM1=2BN=18∴MM1=BM1-BM=10∴MC=M1C=MM1=5∴BC=BM+MC=1故答案为:1.【点睛】此题考查的是垂线段最短的应用、等边三角形的性质和直角三角形的性质,掌握垂线段最短、等边三角形的性质和30°所对的直角边是斜边的一半是解决此题的关键.三、解答题(共78分)19、(1)见解析(2)【解析】(1)证△OAM≌△OBN即可得;(2)作OH⊥AD,由正方形的边长为4且E为OM的中点知OH=HA=2、HM=4,再根据勾股定理得OM=2,由直角三角形性质知MN=OM.【详解】(1)∵四边形ABCD是正方形,∴OA=OB,∠DAO=45°,∠OBA=45°,∴∠OAM=∠OBN=135°,∵∠EOF=90°,∠AOB=90°,∴∠AOM=∠BON,∴△OAM≌△OBN(ASA),∴OM=ON;(2)如图,过点O作OH⊥AD于点H,∵正方形的边长为4,∴OH=HA=2,∵E为OM的中点,∴HM=4,则OM=,∴MN=OM=2.【点睛】本题主要考查正方形的性质,解题的关键是掌握正方形的四条边都相等,正方形的每条对角线平分一组对角及全等三角形的判定与性质.20、(1)见解析;(2)作图见解析,【分析】根据三角形在坐标中的位置,将每个点分别平移,即可画出平移后的图象.【详解】解:(1)、(2)如图:∴点A,B,C的坐标分别为:,,.【点睛】本题考查了平移,轴对称的知识,解题的关键是熟练掌握作图的方法.21、(1)见解析;(2)①见解析;②GE=【分析】(1)由垂美四边形得出AC⊥BD,则∠AOD=∠AOB=∠BOC=∠COD=90°,由勾股定理得AD2+BC2=AO2+DO2+BO2+CO2,AB2+CD2=AO2+BO2+CO2+DO2,即可得出结论;

(2)①连接BG、CE相交于点N,CE交AB于点M,由正方形的性质得出AG=AC,AB=AE,∠CAG=∠BAE=90°,易求∠GAB=∠CAE,由SAS证得△GAB≌△CAE,得出∠ABG=∠AEC,由∠AEC+∠AME=90°,得出∠ABG+∠AME=90°,推出∠ABG+∠BMN=90°,即CE⊥BG,即可得出结论;

②垂美四边形得出CG2+BE2=CB2+GE2,由勾股定理得出BC==3,由正方形的性质得出CG=4,BE=5,则GE2=CG2+BE2-CB2=73,即可得出结果.【详解】(1)证明:∵垂美四边形ABCD的对角线AC,BD交于O,∴AC⊥BD,∴∠AOD=∠AOB=∠BOC=∠COD=90°,由勾股定理得:AD2+BC2=AO2+DO2+BO2+CO2,AB2+CD2=AO2+BO2+CO2+DO2,∴AD2+BC2=AB2+CD2;(2)①证明:连接BG、CE相交于点N,CE交AB于点M,如图2所示:∵正方形ACFG和正方形ABDE,∴AG=AC,AB=AE,∠CAG=∠BAE=90°,∴∠CAG+∠BAC=∠BAE+∠BAC,即∠GAB=∠CAE,在△GAB和△CAE中,,∴△GAB≌△CAE(SAS),∴∠ABG=∠AEC,∵∠AEC+∠AME=90°,∴∠ABG+∠AME=90°,∴∠ABG+∠BMN=90°,即CE⊥BG,∴四边形BCGE是垂美四边形;②解:∵四边形BCGE是垂美四边形,∴由(1)得:CG2+BE2=CB2+GE2,∵AC=4,AB=5,∴BC===3,∵正方形ACFG和正方形ABDE,∴CG=AC=4,BE=AB=5,∴GE2=CG2+BE2﹣CB2=(4)2+(5)2﹣32=73,∴GE=.【点睛】本题是四边形综合题,主要考查了新概念“垂美四边形”、勾股定理、正方形的性质、全等三角形的判定与性质等知识;正确理解新概念“垂美四边形”、证明三角形全等是解题的关键.22、.【分析】先利用勾股定理计算出,再根据旋转的性质得,,则可判定为等腰直角三角形,然后根据等腰直角三角形的性质求的长;【详解】解:点,点,,,,绕点逆时针旋转,得△,,,为等腰直角三角形,;【点睛】本题考查了旋转的性质、等腰直角三角形的性质、勾股定理等知识,解题的关键是会利用两点坐标求两点之间的距离.23、(1)共调查了200名学生.(2)作图见解析;(3)D等级所对应扇形的圆心角度数为18°.【分析】(1)A类学生除以A

所占百分比;

(2)求出B组人数绘图即可;

(3)求出D所占百分率,乘以360度即可.【详解】(1)40÷20%=200(人);

答:共调查了200名学生。

(2)B人数为200×50%=100人,B等级的条形图如图所示:

(3)360°×5%=18°.

答:D等级所对应扇形的圆心角度数为18°.【点睛】本题考查扇形统计图和条形统计图,解题的关键是读懂扇形统计图和条形统计图,掌握扇形统计图和条形统计图的计算.24、(1)等边三角形;(2)8小时【分析】(1)根据题意可得∠BCD=∠BDC=60°,即可知△BCD是等边三角形;

(2)由(1)可求得BC,CD的长,然后易证得△ABC是等腰三角形,继而求得AD的长,则可求得该船从A处航行至D处所用的时间;【详解】解:(1)根据题意得:∠BCD=90°-30°=60°,∠BDC=90°-30°=60°,

∴∠BCD=∠BDC=60°,

∴BC=BD,

∴△BCD是等边三角形;

(2)∵△BCD是等边三角形,

∴CD=BD=BC=60海里,

∵∠BAC=90°-60°=30°,

∴∠ABC=∠BCD-∠BAC=30°,

∴∠BAC=∠ABC,

∴AC=BC=60海里,

∴AD=AC+CD=120海里,

∴该船从A处航行至D处所用的时间为:120÷15=8(小时);【点睛】此题考查了方向角问题.注意准确构造直角三角形是解此题的关键.25、(1)详见解析;(2)1.【分析】(1)先利用等腰三角形等边对等角得出∠B=∠C,再利用AAS证明△BDE≌△CDF,即可得出结论;(2)先证明△ABC是等边三角形,然后根据含30°的直角三角形的性质求出等边三角形的边长,则周长可求.【详解】(1)证明:∵AB=AC∴∠B=∠C,∵DE⊥AB于E,DF⊥AC于F,∴∠BED=∠CFD=90°,∵D是BC边的中点,∴BD=CD,在△BDE和△CDF中,,∴△BDE≌△CDF(AAS)∴BE=CF;(2)解:∵AB=AC,∠BAC=60°,∴△ABC是等边三角形,∴∠B=∠C=60°,∵∠BED=∠CFD=90°,∴∠BDE=∠CDF=30°,∴BD=2BE=2=CD,∴BC=4,∴△ABC周长=4×3=1.【点睛】本题主要考查全等三角形的判定及性质,等边三角形的判定及性

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论