版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
安徽省合肥市重点中学2024届高三第二学期停课不停学阶段性检测试题数学试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知等差数列中,,则()A.20 B.18 C.16 D.142.若函数恰有3个零点,则实数的取值范围是()A. B. C. D.3.中,角的对边分别为,若,,,则的面积为()A. B. C. D.4.已知抛物线:的焦点为,准线为,是上一点,直线与抛物线交于,两点,若,则为()A. B.40 C.16 D.5.过圆外一点引圆的两条切线,则经过两切点的直线方程是().A. B. C. D.6.已知数列,,,…,是首项为8,公比为得等比数列,则等于()A.64 B.32 C.2 D.47.抛掷一枚质地均匀的硬币,每次正反面出现的概率相同,连续抛掷5次,至少连续出现3次正面朝上的概率是()A. B. C. D.8.设是定义在实数集上的函数,满足条件是偶函数,且当时,,则,,的大小关系是()A. B. C. D.9.若复数满足,复数的共轭复数是,则()A.1 B.0 C. D.10.已知三棱锥的所有顶点都在球的球面上,平面,,若球的表面积为,则三棱锥的体积的最大值为()A. B. C. D.11.集合,则()A. B. C. D.12.下列不等式成立的是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知集合,则____________.14.关于函数有下列四个命题:①函数在上是增函数;②函数的图象关于中心对称;③不存在斜率小于且与函数的图象相切的直线;④函数的导函数不存在极小值.其中正确的命题有______.(写出所有正确命题的序号)15.在中,角,,所对的边分别边,且,设角的角平分线交于点,则的值最小时,___.16.函数的最小正周期为________;若函数在区间上单调递增,则的最大值为________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数(,),.(Ⅰ)讨论的单调性;(Ⅱ)若对任意的,恒成立,求实数的取值范围.18.(12分)已知函数.(1)求曲线在点处的切线方程;(2)若对任意的,当时,都有恒成立,求最大的整数.(参考数据:)19.(12分)如图,在四棱锥中,四边形是直角梯形,底面,是的中点.(1).求证:平面平面;(2).若二面角的余弦值为,求直线与平面所成角的正弦值.20.(12分)已知函数.(1)讨论函数的极值;(2)记关于的方程的两根分别为,求证:.21.(12分)某单位准备购买三台设备,型号分别为已知这三台设备均使用同一种易耗品,提供设备的商家规定:可以在购买设备的同时购买该易耗品,每件易耗品的价格为100元,也可以在设备使用过程中,随时单独购买易耗品,每件易耗品的价格为200元.为了决策在购买设备时应购买的易耗品的件数.该单位调查了这三种型号的设备各60台,调査每台设备在一个月中使用的易耗品的件数,并得到统计表如下所示.每台设备一个月中使用的易耗品的件数678型号A30300频数型号B203010型号C04515将调查的每种型号的设备的频率视为概率,各台设备在易耗品的使用上相互独立.(1)求该单位一个月中三台设备使用的易耗品总数超过21件的概率;(2)以该单位一个月购买易耗品所需总费用的期望值为决策依据,该单位在购买设备时应同时购买20件还是21件易耗品?22.(10分)追求人类与生存环境的和谐发展是中国特色社会主义生态文明的价值取向.为了改善空气质量,某城市环保局随机抽取了一年内100天的空气质量指数()的检测数据,结果统计如下:空气质量优良轻度污染中度污染重度污染严重污染天数61418272510(1)从空气质量指数属于,的天数中任取3天,求这3天中空气质量至少有2天为优的概率;(2)已知某企业每天的经济损失(单位:元)与空气质量指数的关系式为,试估计该企业一个月(按30天计算)的经济损失的数学期望.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解题分析】
设等差数列的公差为,再利用基本量法与题中给的条件列式求解首项与公差,进而求得即可.【题目详解】设等差数列的公差为.由得,解得.所以.故选:A【题目点拨】本题主要考查了等差数列的基本量求解,属于基础题.2、B【解题分析】
求导函数,求出函数的极值,利用函数恰有三个零点,即可求实数的取值范围.【题目详解】函数的导数为,令,则或,上单调递减,上单调递增,所以0或是函数y的极值点,函数的极值为:,函数恰有三个零点,则实数的取值范围是:.故选B.【题目点拨】该题考查的是有关结合函数零点个数,来确定参数的取值范围的问题,在解题的过程中,注意应用导数研究函数图象的走向,利用数形结合思想,转化为函数图象间交点个数的问题,难度不大.3、A【解题分析】
先求出,由正弦定理求得,然后由面积公式计算.【题目详解】由题意,.由得,.故选:A.【题目点拨】本题考查求三角形面积,考查正弦定理,同角间的三角函数关系,两角和的正弦公式与诱导公式,解题时要根据已知求值要求确定解题思路,确定选用公式顺序,以便正确快速求解.4、D【解题分析】
如图所示,过分别作于,于,利用和,联立方程组计算得到答案.【题目详解】如图所示:过分别作于,于.,则,根据得到:,即,根据得到:,即,解得,,故.故选:.【题目点拨】本题考查了抛物线中弦长问题,意在考查学生的计算能力和转化能力.5、A【解题分析】过圆外一点,引圆的两条切线,则经过两切点的直线方程为,故选.6、A【解题分析】
根据题意依次计算得到答案.【题目详解】根据题意知:,,故,,.故选:.【题目点拨】本题考查了数列值的计算,意在考查学生的计算能力.7、A【解题分析】
首先求出样本空间样本点为个,再利用分类计数原理求出三个正面向上为连续的3个“1”的样本点个数,再求出重复数量,可得事件的样本点数,根据古典概型的概率计算公式即可求解.【题目详解】样本空间样本点为个,具体分析如下:记正面向上为1,反面向上为0,三个正面向上为连续的3个“1”,有以下3种位置1____,__1__,____1.剩下2个空位可是0或1,这三种排列的所有可能分别都是,但合并计算时会有重复,重复数量为,事件的样本点数为:个.故不同的样本点数为8个,.故选:A【题目点拨】本题考查了分类计数原理与分步计数原理,古典概型的概率计算公式,属于基础题8、C【解题分析】∵y=f(x+1)是偶函数,∴f(-x+1)=f(x+1),即函数f(x)关于x=1对称.
∵当x≥1时,为减函数,∵f(log32)=f(2-log32)=f()且==log34,log34<<3,∴b>a>c,
故选C9、C【解题分析】
根据复数代数形式的运算法则求出,再根据共轭复数的概念求解即可.【题目详解】解:∵,∴,则,∴,故选:C.【题目点拨】本题主要考查复数代数形式的运算法则,考查共轭复数的概念,属于基础题.10、B【解题分析】
由题意画出图形,设球0得半径为R,AB=x,AC=y,由球0的表面积为20π,可得R2=5,再求出三角形ABC外接圆的半径,利用余弦定理及基本不等式求xy的最大值,代入棱锥体积公式得答案.【题目详解】设球的半径为,,,由,得.如图:设三角形的外心为,连接,,,可得,则.在中,由正弦定理可得:,即,由余弦定理可得,,.则三棱锥的体积的最大值为.故选:.【题目点拨】本题考查三棱锥的外接球、三棱锥的侧面积、体积,基本不等式等基础知识,考查空间想象能力、逻辑思维能力、运算求解能力,考查数学转化思想方法与数形结合的解题思想方法,是中档题.11、D【解题分析】
利用交集的定义直接计算即可.【题目详解】,故,故选:D.【题目点拨】本题考查集合的交运算,注意常见集合的符号表示,本题属于基础题.12、D【解题分析】
根据指数函数、对数函数、幂函数的单调性和正余弦函数的图象可确定各个选项的正误.【题目详解】对于,,,错误;对于,在上单调递减,,错误;对于,,,,错误;对于,在上单调递增,,正确.故选:.【题目点拨】本题考查根据初等函数的单调性比较大小的问题;关键是熟练掌握正余弦函数图象、指数函数、对数函数和幂函数的单调性.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】
根据并集的定义计算即可.【题目详解】由集合的并集,知.故答案为:【题目点拨】本题考查集合的并集运算,属于容易题.14、①②③【解题分析】
由单调性、对称性概念、导数的几何意义、导数与极值的关系进行判断.【题目详解】函数的定义域是,由于,在上递增,∴函数在上是递增,①正确;,∴函数的图象关于中心对称,②正确;,时取等号,∴③正确;,设,则,显然是即的极小值点,④错误.故答案为:①②③.【题目点拨】本题考查函数的单调性、对称性,考查导数的几何意义、导数与极值,解题时按照相关概念判断即可,属于中档题.15、【解题分析】
根据题意,利用余弦定理和基本不等式得出,再利用正弦定理,即可得出.【题目详解】因为,则,由余弦定理得:,当且仅当时取等号,又因为,,所以.故答案为:.【题目点拨】本题考查余弦定理和正弦定理的应用,以及基本不等式求最值,考查计算能力.16、【解题分析】
直接计算得到答案,根据题意得到,,解得答案.【题目详解】,故,当时,,故,解得.故答案为:;.【题目点拨】本题考查了三角函数的周期和单调性,意在考查学生对于三角函数知识的综合应用.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(Ⅰ)见解析(Ⅱ)【解题分析】
(Ⅰ)求导得到,讨论和两种情况,得到答案.(Ⅱ)变换得到,设,求,令,故在单调递增,存在使得,,计算得到答案.【题目详解】(Ⅰ)(),当时,在单调递减,在单调递增;当时,在单调递增,在单调递减.(Ⅱ)(),即,().令(),则,令,,故在单调递增,注意到,,于是存在使得,可知在单调递增,在单调递减.∴.综上知,.【题目点拨】本题考查了函数的单调性,恒成立问题,意在考查学生对于导数知识的综合应用能力.18、(1)(2)2【解题分析】
(1)先求得切点坐标,利用导数求得切线的斜率,由此求得切线方程.(2)对分成,两种情况进行分类讨论.当时,将不等式转化为,构造函数,利用导数求得的最小值(设为)的取值范围,由的得在上恒成立,结合一元二次不等式恒成立,判别式小于零列不等式,解不等式求得的取值范围.【题目详解】(1)已知函数,则处即为,又,,可知函数过点的切线为,即.(2)注意到,不等式中,当时,显然成立;当时,不等式可化为令,则,,所以存在,使.由于在上递增,在上递减,所以是的唯一零点.且在区间上,递减,在区间上,递增,即的最小值为,令,则,将的最小值设为,则,因此原式需满足,即在上恒成立,又,可知判别式即可,即,且可以取到的最大整数为2.【题目点拨】本小题主要考查利用导数求切线方程,考查利用导数研究不等式恒成立问题,考查化归与转化的数学思想方法,属于难题.19、(1)见解析;(2).【解题分析】试题分析:(1)根据平面有,利用勾股定理可证明,故平面,再由面面垂直的判定定理可证得结论;(2)在点建立空间直角坐标系,利用二面角的余弦值为建立方程求得,在利用法向量求得和平面所成角的正弦值.试题解析:(Ⅰ)平面平面因为,所以,所以,所以,又,所以平面.因为平面,所以平面平面.(Ⅱ)如图,以点为原点,分别为轴、轴、轴正方向,建立空间直角坐标系,则.设,则取,则为面法向量.设为面的法向量,则,即,取,则依题意,则.于是.设直线与平面所成角为,则即直线与平面所成角的正弦值为.20、(1)见解析;(2)见解析【解题分析】
(1)对函数求导,对参数讨论,得函数单调区间,进而求出极值;(2)是方程的两根,代入方程,化简换元,构造新函数利用函数单调性求最值可解.【题目详解】(1)依题意,;若,则,则函数在上单调递增,此时函数既无极大值,也无极小值;若,则,令,解得,故当时,,单调递增;当时,,单调递减,此时函数有极大值,无极小值;若,则,令,解得,故当时,,单调递增;当时,,单调递减,此时函数有极大值,无极小值;(2)依题意,,则,,故,;要证:,即证,即证:,即证,设,只需证:,设,则,故在上单调递增,故,即,故.【题目点拨】本题考查函数极值及利用导数证明二元不等式.证明二元不等式常用方法是转化为证明一元不等式,再转化为函数最值问题.利用导数证明不等式的基本方法:(1)若与的最值易求出,可直接转化为证明;(2)若与的最值不易求出,可构造函数,然后根据函数的单调性或最值,证明.21、(1)(2)应该购买21件易耗品【解题分析】
(1)由统计表中数据可得型号分别为在一个月使用易耗品的件数为6,7,8时的概率,设该单位三台设备一个月中使用易耗品的件数总数为X,则,利用独立事件概率公式进而求解即可;(2)由题可得X所有可能的取值为,即可求得对应的概率,再分别讨论该单位在购买设备时应同时购买20件易耗品和21件易耗品时总费用的可能取值及期望,即可分析求解.【题目
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度汽车租赁合同挂靠车辆租赁合同终止流程
- 2025年度历史纪录片制作合同清洁版
- 二零二五年度知识产权共享与养老产业资源合同
- 二零二五年度企业品牌赠与合同示范
- 邯郸2024年河北邯郸馆陶县选聘农村党务(村务)工作者90人笔试历年参考题库附带答案详解
- 南京交通职业技术学院《园林建筑构造》2023-2024学年第一学期期末试卷
- 2025年度珠宝首饰销售合同样本2篇
- 南京大学金陵学院《美国社会与文化》2023-2024学年第一学期期末试卷
- 南京财经大学红山学院《多媒体基础》2023-2024学年第一学期期末试卷
- 南昌医学院《视效项目准备流程》2023-2024学年第一学期期末试卷
- 吉利汽车集团总部机构设置、岗位编制
- 矿山安全生产法律法规
- 小学数学《比的认识单元复习课》教学设计(课例)
- 词性转换清单-2024届高考英语外研版(2019)必修第一二三册
- GB/T 44670-2024殡仪馆职工安全防护通用要求
- 安徽省合肥市2023-2024学年七年级上学期期末数学试题(含答案)
- 合同债务人变更协议书模板
- 2024年高中生物新教材同步选择性必修第三册学习笔记第4章 本章知识网络
- 西班牙可再生能源行业市场前景及投资研究报告-培训课件外文版2024.6光伏储能风电
- 2024-2029年中国制浆系统行业市场现状分析及竞争格局与投资发展研究报告
- (正式版)SHT 3225-2024 石油化工安全仪表系统安全完整性等级设计规范
评论
0/150
提交评论