2024届河北省藁城市第一中学高考考前冲刺必刷卷(五)全国I卷数学试题_第1页
2024届河北省藁城市第一中学高考考前冲刺必刷卷(五)全国I卷数学试题_第2页
2024届河北省藁城市第一中学高考考前冲刺必刷卷(五)全国I卷数学试题_第3页
2024届河北省藁城市第一中学高考考前冲刺必刷卷(五)全国I卷数学试题_第4页
2024届河北省藁城市第一中学高考考前冲刺必刷卷(五)全国I卷数学试题_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届河北省藁城市第一中学高考考前冲刺必刷卷(五)全国I卷数学试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.定义,已知函数,,则函数的最小值为()A. B. C. D.2.在函数:①;②;③;④中,最小正周期为的所有函数为()A.①②③ B.①③④ C.②④ D.①③3.已知函数,的图象与直线的两个相邻交点的距离等于,则的一条对称轴是()A. B. C. D.4.在中,,,分别为角,,的对边,若的面为,且,则()A.1 B. C. D.5.我国古代数学著作《九章算术》中有如下问题:“今有器中米,不知其数,前人取半,中人三分取一,后人四分取一,余米一斗五升(注:一斗为十升).问,米几何?”下图是解决该问题的程序框图,执行该程序框图,若输出的S=15(单位:升),则输入的k的值为() A.45 B.60 C.75 D.1006.已知复数满足,则=()A. B.C. D.7.已知集合,集合,则等于()A. B.C. D.8.设直线过点,且与圆:相切于点,那么()A. B.3 C. D.19.若单位向量,夹角为,,且,则实数()A.-1 B.2 C.0或-1 D.2或-110.设点,P为曲线上动点,若点A,P间距离的最小值为,则实数t的值为()A. B. C. D.11.已知集合,则为()A.[0,2) B.(2,3] C.[2,3] D.(0,2]12.在三角形中,,,求()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.一个空间几何体的三视图及部分数据如图所示,则这个几何体的体积是___________14.的展开式中的常数项为_______.15.已知向量=(1,2),=(-3,1),则=______.16.曲线在点处的切线方程为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在中,、、的对应边分别为、、,已知,,.(1)求;(2)设为中点,求的长.18.(12分)已知曲线C的极坐标方程是.以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,直线l的参数方程是:(是参数).(1)若直线l与曲线C相交于A、B两点,且,试求实数m值.(2)设为曲线上任意一点,求的取值范围.19.(12分)在锐角中,分别是角的对边,,,且.(1)求角的大小;(2)求函数的值域.20.(12分)设,(1)求的单调区间;(2)设恒成立,求实数的取值范围.21.(12分)每年3月20日是国际幸福日,某电视台随机调查某一社区人们的幸福度.现从该社区群中随机抽取18名,用“10分制”记录了他们的幸福度指数,结果见如图所示茎叶图,其中以小数点前的一位数字为茎,小数点后的一位数字为叶.若幸福度不低于8.5分,则称该人的幸福度为“很幸福”.(Ⅰ)求从这18人中随机选取3人,至少有1人是“很幸福”的概率;(Ⅱ)以这18人的样本数据来估计整个社区的总体数据,若从该社区(人数很多)任选3人,记表示抽到“很幸福”的人数,求的分布列及.22.(10分)如图,在四棱锥中,侧棱底面,,,,,是棱中点.(1)已知点在棱上,且平面平面,试确定点的位置并说明理由;(2)设点是线段上的动点,当点在何处时,直线与平面所成角最大?并求最大角的正弦值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解题分析】

根据分段函数的定义得,,则,再根据基本不等式构造出相应的所需的形式,可求得函数的最小值.【题目详解】依题意得,,则,(当且仅当,即时“”成立.此时,,,的最小值为,故选:A.【题目点拨】本题考查求分段函数的最值,关键在于根据分段函数的定义得出,再由基本不等式求得最值,属于中档题.2、A【解题分析】逐一考查所给的函数:,该函数为偶函数,周期;将函数图象x轴下方的图象向上翻折即可得到的图象,该函数的周期为;函数的最小正周期为;函数的最小正周期为;综上可得最小正周期为的所有函数为①②③.本题选择A选项.点睛:求三角函数式的最小正周期时,要尽可能地化为只含一个三角函数的式子,否则很容易出现错误.一般地,经过恒等变形成“y=Asin(ωx+φ),y=Acos(ωx+φ),y=Atan(ωx+φ)”的形式,再利用周期公式即可.3、D【解题分析】

由题,得,由的图象与直线的两个相邻交点的距离等于,可得最小正周期,从而求得,得到函数的解析式,又因为当时,,由此即可得到本题答案.【题目详解】由题,得,因为的图象与直线的两个相邻交点的距离等于,所以函数的最小正周期,则,所以,当时,,所以是函数的一条对称轴,故选:D【题目点拨】本题主要考查利用和差公式恒等变形,以及考查三角函数的周期性和对称性.4、D【解题分析】

根据三角形的面积公式以及余弦定理进行化简求出的值,然后利用两角和差的正弦公式进行求解即可.【题目详解】解:由,得,∵,∴,即即,则,∵,∴,∴,即,则,故选D.【题目点拨】本题主要考查解三角形的应用,结合三角形的面积公式以及余弦定理求出的值以及利用两角和差的正弦公式进行计算是解决本题的关键.5、B【解题分析】

根据程序框图中程序的功能,可以列方程计算.【题目详解】由题意,.故选:B.【题目点拨】本题考查程序框图,读懂程序的功能是解题关键.6、B【解题分析】

利用复数的代数运算法则化简即可得到结论.【题目详解】由,得,所以,.故选:B.【题目点拨】本题考查复数代数形式的乘除运算,考查复数的基本概念,属于基础题.7、B【解题分析】

求出中不等式的解集确定出集合,之后求得.【题目详解】由,所以,故选:B.【题目点拨】该题考查的是有关集合的运算的问题,涉及到的知识点有一元二次不等式的解法,集合的运算,属于基础题目.8、B【解题分析】

过点的直线与圆:相切于点,可得.因此,即可得出.【题目详解】由圆:配方为,,半径.∵过点的直线与圆:相切于点,∴;∴;故选:B.【题目点拨】本小题主要考查向量数量积的计算,考查圆的方程,属于基础题.9、D【解题分析】

利用向量模的运算列方程,结合向量数量积的运算,求得实数的值.【题目详解】由于,所以,即,,即,解得或.故选:D【题目点拨】本小题主要考查向量模的运算,考查向量数量积的运算,属于基础题.10、C【解题分析】

设,求,作为的函数,其最小值是6,利用导数知识求的最小值.【题目详解】设,则,记,,易知是增函数,且的值域是,∴的唯一解,且时,,时,,即,由题意,而,,∴,解得,.∴.故选:C.【题目点拨】本题考查导数的应用,考查用导数求最值.解题时对和的关系的处理是解题关键.11、B【解题分析】

先求出,得到,再结合集合交集的运算,即可求解.【题目详解】由题意,集合,所以,则,所以.故选:B.【题目点拨】本题主要考查了集合的混合运算,其中解答中熟记集合的交集、补集的定义及运算是解答的关键,着重考查了计算能力,属于基础题.12、A【解题分析】

利用正弦定理边角互化思想结合余弦定理可求得角的值,再利用正弦定理可求得的值.【题目详解】,由正弦定理得,整理得,由余弦定理得,,.由正弦定理得.故选:A.【题目点拨】本题考查利用正弦定理求值,涉及正弦定理边角互化思想以及余弦定理的应用,考查计算能力,属于中等题.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】

先还原几何体,再根据柱体体积公式求解【题目详解】空间几何体为一个棱柱,如图,底面为边长为的直角三角形,高为的棱柱,所以体积为【题目点拨】本题考查三视图以及柱体体积公式,考查基本分析求解能力,属基础题14、【解题分析】

写出展开式的通项公式,考虑当的指数为零时,对应的值即为常数项.【题目详解】的展开式通项公式为:,令,所以,所以常数项为.

故答案为:.【题目点拨】本题考查二项展开式中指定项系数的求解,难度较易.解答问题的关键是,能通过展开式通项公式分析常数项对应的取值.15、-6【解题分析】

由可求,然后根据向量数量积的坐标表示可求.【题目详解】∵=(1,2),=(-3,1),∴=(-4,-1),则=1×(-4)+2×(-1)=-6故答案为-6【题目点拨】本题主要考查了向量数量积的坐标表示,属于基础试题.16、【解题分析】

对函数求导,得出在处的一阶导数值,即得出所求切线的斜率,再运用直线的点斜式求出切线的方程.【题目详解】令,,所以,又,所求切线方程为,即.故答案为:.【题目点拨】本题考查运用函数的导函数求函数在切点处的切线方程,关键在于求出在切点处的导函数值就是切线的斜率,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解题分析】

(1)直接根据特殊角的三角函数值求出,结合正弦定理求出;(2)结合第一问的结论以及余弦定理即可求解.【题目详解】解:(1)∵,且,∴,由正弦定理,∴,∵∴锐角,∴(2)∵,∴∴∴在中,由余弦定理得∴【题目点拨】本题主要考查了正弦定理和余弦定理的运用.考查了学生对三角函数基础知识的综合运用.18、(1)或;(2).【解题分析】

(1)将曲线的极坐标方程化为直角坐标方程,在直角坐标条件下求出曲线的圆心坐标和半径,将直线的参数方程化为普通方程,由勾股定理列出等式可求的值;(2)将圆化为参数方程形式,代入由三角公式化简可求其取值范围.【题目详解】(1)曲线C的极坐标方程是化为直角坐标方程为:直线的直角坐标方程为:圆心到直线l的距离(弦心距)圆心到直线的距离为:或(2)曲线的方程可化为,其参数方程为:为曲线上任意一点,的取值范围是19、(1);(2)【解题分析】

(1)由向量平行的坐标表示、正弦定理边化角和两角和差正弦公式可化简求得,进而得到;(2)利用两角和差余弦公式、二倍角和辅助角公式化简函数为,根据的范围可确定的范围,结合正弦函数图象可确定所求函数的值域.【题目详解】(1),,由正弦定理得:,即,,,,又,.(2)在锐角中,,..,,,,函数的值域为.【题目点拨】本题考查三角恒等变换、解三角形和三角函数性质的综合应用问题;涉及到共线向量的坐标表示、利用三角恒等变换公式化简求值、正弦定理边化角的应用、正弦型函数值域的求解等知识.20、(1)单调递增区间为,单调递减区间为;(2)【解题分析】

(1),令,解不等式即可;(2),令得,即,且的最小值为,令,结合即可解决.【题目详解】(1),当时,,递增,当时,,递减.故的单调递增区间为,单调递减区间为.(2),,,设的根为,即有可得,,当时,,递减,当时,,递增.,所以,①当;②当时,设,递增,,所以.综上,.【题目点拨】本题考查了利用导数研究函数单调性以及函数恒成立问题,这里要强调一点,处理恒成立问题时,通常是构造函数,将问题转化为函数的极值或最值来处理.21、(Ⅰ).(Ⅱ)见解析.【解题分析】

(Ⅰ)人中很幸福的有人,可以先计算其逆事件,即人都认为不很幸福的概率,再用减去人都认为不很幸福的概率即可;(Ⅱ)根据题意,随机变量,列出分布列,根据公式求出期望即可.【题目详解】(Ⅰ)设事件抽出的人至少有人是“很幸福”的,则表示人都认为不很幸福(Ⅱ)根据题意,随机变量,的可能的取值为;;;所以随机变量的分布列为:所以的期望【题目点拨】本题考查了离散型随机变量的概率分布列,数学期望的求解,概率分布中的二项分布问题,属于常规题型.22、(1)为中点,理由见解析;(2)当点在线段靠近的三等分点时,直线与平面所成角最大,最大角的正弦值.【解题分析】

(1)为中点,可利用中位线与平行四边形性质证明,,从而证明平面平面;(2)以A为原点,分别以,,所在直

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论