版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东省普宁二中2024届普通高中高三第二次教学质量检测试题数学试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在区间上随机取一个实数,使直线与圆相交的概率为()A. B. C. D.2.已知抛物线的焦点为,为抛物线上一点,,当周长最小时,所在直线的斜率为()A. B. C. D.3.中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是A. B. C. D.4.设则以线段为直径的圆的方程是()A. B.C. D.5.函数的图象如图所示,为了得到的图象,可将的图象()A.向右平移个单位 B.向右平移个单位C.向左平移个单位 D.向左平移个单位6.已知函数(,且)在区间上的值域为,则()A. B. C.或 D.或47.已知甲、乙两人独立出行,各租用共享单车一次(假定费用只可能为、、元).甲、乙租车费用为元的概率分别是、,甲、乙租车费用为元的概率分别是、,则甲、乙两人所扣租车费用相同的概率为()A. B. C. D.8.若函数的图象上两点,关于直线的对称点在的图象上,则的取值范围是()A. B. C. D.9.中国古代中的“礼、乐、射、御、书、数”合称“六艺”.“礼”,主要指德育;“乐”,主要指美育;“射”和“御”,就是体育和劳动;“书”,指各种历史文化知识;“数”,指数学.某校国学社团开展“六艺”课程讲座活动,每艺安排一节,连排六节,一天课程讲座排课有如下要求:“数”必须排在第三节,且“射”和“御”两门课程相邻排课,则“六艺”课程讲座不同的排课顺序共有()A.12种 B.24种 C.36种 D.48种10.已知点是双曲线上一点,若点到双曲线的两条渐近线的距离之积为,则双曲线的离心率为()A. B. C. D.211.若函数在时取得最小值,则()A. B. C. D.12.已知函数,则()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知函数,若函数恰有4个零点,则实数的取值范围是________.14.(x+y)(2x-y)5的展开式中x3y3的系数为________.15.在数列中,已知,则数列的的前项和为__________.16.在中,已知,,是边的垂直平分线上的一点,则__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数.(1)求不等式的解集;(2)若函数的定义域为,求实数的取值范围.18.(12分)△的内角的对边分别为,且.(1)求角的大小(2)若,△的面积,求△的周长.19.(12分)已知凸边形的面积为1,边长,,其内部一点到边的距离分别为.求证:.20.(12分)己知的内角的对边分别为.设(1)求的值;(2)若,且,求的值.21.(12分)在直角坐标系中,直线l过点,且倾斜角为,以直角坐标系的原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为.求直线l的参数方程和曲线C的直角坐标方程,并判断曲线C是什么曲线;设直线l与曲线C相交与M,N两点,当,求的值.22.(10分)设函数,.(Ⅰ)讨论的单调性;(Ⅱ)时,若,,求证:.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解题分析】
利用直线与圆相交求出实数的取值范围,然后利用几何概型的概率公式可求得所求事件的概率.【题目详解】由于直线与圆相交,则,解得.因此,所求概率为.故选:D.【题目点拨】本题考查几何概型概率的计算,同时也考查了利用直线与圆相交求参数,考查计算能力,属于基础题.2、A【解题分析】
本道题绘图发现三角形周长最小时A,P位于同一水平线上,计算点P的坐标,计算斜率,即可.【题目详解】结合题意,绘制图像要计算三角形PAF周长最小值,即计算PA+PF最小值,结合抛物线性质可知,PF=PN,所以,故当点P运动到M点处,三角形周长最小,故此时M的坐标为,所以斜率为,故选A.【题目点拨】本道题考查了抛物线的基本性质,难度中等.3、A【解题分析】
详解:由题意知,题干中所给的是榫头,是凸出的几何体,求得是卯眼的俯视图,卯眼是凹进去的,即俯视图中应有一不可见的长方形,且俯视图应为对称图形故俯视图为故选A.点睛:本题主要考查空间几何体的三视图,考查学生的空间想象能力,属于基础题。4、A【解题分析】
计算的中点坐标为,圆半径为,得到圆方程.【题目详解】的中点坐标为:,圆半径为,圆方程为.故选:.【题目点拨】本题考查了圆的标准方程,意在考查学生的计算能力.5、C【解题分析】
根据正弦型函数的图象得到,结合图像变换知识得到答案.【题目详解】由图象知:,∴.又时函数值最大,所以.又,∴,从而,,只需将的图象向左平移个单位即可得到的图象,故选C.【题目点拨】已知函数的图象求解析式(1).(2)由函数的周期求(3)利用“五点法”中相对应的特殊点求,一般用最高点或最低点求.6、C【解题分析】
对a进行分类讨论,结合指数函数的单调性及值域求解.【题目详解】分析知,.讨论:当时,,所以,,所以;当时,,所以,,所以.综上,或,故选C.【题目点拨】本题主要考查指数函数的值域问题,指数函数的值域一般是利用单调性求解,侧重考查数学运算和数学抽象的核心素养.7、B【解题分析】
甲、乙两人所扣租车费用相同即同为1元,或同为2元,或同为3元,由独立事件的概率公式计算即得.【题目详解】由题意甲、乙租车费用为3元的概率分别是,∴甲、乙两人所扣租车费用相同的概率为.故选:B.【题目点拨】本题考查独立性事件的概率.掌握独立事件的概率乘法公式是解题基础.8、D【解题分析】
由题可知,可转化为曲线与有两个公共点,可转化为方程有两解,构造函数,利用导数研究函数单调性,分析即得解【题目详解】函数的图象上两点,关于直线的对称点在上,即曲线与有两个公共点,即方程有两解,即有两解,令,则,则当时,;当时,,故时取得极大值,也即为最大值,当时,;当时,,所以满足条件.故选:D【题目点拨】本题考查了利用导数研究函数的零点,考查了学生综合分析,转化划归,数形结合,数学运算的能力,属于较难题.9、C【解题分析】
根据“数”排在第三节,则“射”和“御”两门课程相邻有3类排法,再考虑两者的顺序,有种,剩余的3门全排列,即可求解.【题目详解】由题意,“数”排在第三节,则“射”和“御”两门课程相邻时,可排在第1节和第2节或第4节和第5节或第5节和第6节,有3种,再考虑两者的顺序,有种,剩余的3门全排列,安排在剩下的3个位置,有种,所以“六艺”课程讲座不同的排课顺序共有种不同的排法.故选:C.【题目点拨】本题主要考查了排列、组合的应用,其中解答中认真审题,根据题设条件,先排列有限制条件的元素是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.10、A【解题分析】
设点的坐标为,代入椭圆方程可得,然后分别求出点到两条渐近线的距离,由距离之积为,并结合,可得到的齐次方程,进而可求出离心率的值.【题目详解】设点的坐标为,有,得.双曲线的两条渐近线方程为和,则点到双曲线的两条渐近线的距离之积为,所以,则,即,故,即,所以.故选:A.【题目点拨】本题考查双曲线的离心率,构造的齐次方程是解决本题的关键,属于中档题.11、D【解题分析】
利用辅助角公式化简的解析式,再根据正弦函数的最值,求得在函数取得最小值时的值.【题目详解】解:,其中,,,故当,即时,函数取最小值,所以,故选:D【题目点拨】本题主要考查辅助角公式,正弦函数的最值的应用,属于基础题.12、A【解题分析】
根据分段函数解析式,先求得的值,再求得的值.【题目详解】依题意,.故选:A【题目点拨】本小题主要考查根据分段函数解析式求函数值,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】
函数恰有4个零点,等价于函数与函数的图象有四个不同的交点,画出函数图象,利用数形结合思想进行求解即可.【题目详解】函数恰有4个零点,等价于函数与函数的图象有四个不同的交点,画出函数图象如下图所示:由图象可知:实数的取值范围是.故答案为:【题目点拨】本题考查了已知函数零点个数求参数取值范围问题,考查了数形结合思想和转化思想.14、40【解题分析】
先求出的展开式的通项,再求出即得解.【题目详解】设的展开式的通项为,令r=3,则,令r=2,则,所以展开式中含x3y3的项为.所以x3y3的系数为40.故答案为:40【题目点拨】本题主要考查二项式定理求指定项的系数,意在考查学生对这些知识的理解掌握水平.15、【解题分析】
由已知数列递推式可得数列的所有奇数项与偶数项分别构成以2为公比的等比数列,求其通项公式,得到,再由求解.【题目详解】解:由,得,,则数列的所有奇数项与偶数项分别构成以2为公比的等比数列.,..故答案为:.【题目点拨】本题考查数列递推式,考查等差数列与等比数列的通项公式,训练了数列的分组求和,属于中档题.16、【解题分析】
作出图形,设点为线段的中点,可得出且,进而可计算出的值.【题目详解】设点为线段的中点,则,,,.故答案为:.【题目点拨】本题考查平面向量数量积的计算,涉及平面向量数量积运算律的应用,解答的关键就是选择合适的基底表示向量,考查计算能力,属于中等题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解题分析】
(1)分类讨论,去掉绝对值,化为与之等价的三个不等式组,求得每个不等式组的解集,再取并集即可.(2)要使函数的定义域为R,只要的最小值大于0即可,根据绝对值不等式的性质求得最小值即可得到答案.【题目详解】(1)不等式或或,解得或,即x>0,所以原不等式的解集为.(2)要使函数的定义域为R,只要的最小值大于0即可,又,当且仅当时取等,只需最小值,即.所以实数a的取值范围是.【题目点拨】本题考查绝对值不等式的解法,考查利用绝对值三角不等式求最值,属基础题.18、(I);(II).【解题分析】
试题分析:(I)由已知可得;(II)依题意得:的周长为.试题解析:(I)∵,∴.∴,∴,∴,∴,∴.(II)依题意得:∴,∴,∴,∴,∴的周长为.考点:1、解三角形;2、三角恒等变换.19、证明见解析【解题分析】
由已知,易得,所以利用柯西不等式和基本不等式即可证明.【题目详解】因为凸边形的面积为1,所以,所以(由柯西不等式得)(由均值不等式得)【题目点拨】本题考查利用柯西不等式、基本不等式证明不等式的问题,考查学生对不等式灵活运用的能力,是一道容易题.20、(1)(2)【解题分析】
(1)由正弦定理将,转化,即,由余弦定理求得,再由平方关系得再求解.(2)由,得,结合再求解.【题目详解】(1)由正弦定理,得,即,则,而,又,解得,故.(2)因为,则,因为,故,故,解得,故,则.【题目点拨】本题考查正弦定理、余弦定理、三角形的面积公式,考查运算求解能力以及化归与转化思想,属于中档题.21、(Ⅰ)曲线是焦点在轴上的椭圆;(Ⅱ).【解题分析】试题分析:(1)由题易知,直线的参数方程为,(为参数),;曲线的直角坐标方程为,椭圆;(2)将直线代入椭圆得到,所以,解得.试题解析:(Ⅰ)直线的参数方程为.曲线的直角坐标方程为,即,所以曲线是焦点在轴上的椭圆.(Ⅱ)将的参数方程代入曲线的直角坐标方程为得,,得,,22、(1)证明见解析;(2)证明见解析.【解题分析】
(1)首先对函数求导,再根据参数的取值,讨论的正负,即可求出关于的单调性即可;(2)首先通过构造新函数,讨论新函数的单调性,根据新函数的单调性证明.【题目详解】(1),
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024新款台式电脑采购合同3篇
- 2024年版施工图设计补充协议模板版B版
- 计网课程设计实验报告
- 年产42万台电壁炉项目可行性研究报告申请备案
- 苏州工会课程设计指南
- 劳动合同(完整版)
- 网络营销课程设计戴尔
- 电气课程设计图
- 能源预测课程设计
- 泵与泵站课程设计结语
- 2025年行政执法人员执法资格考试必考题库及答案(共232题)
- 2025年北京探矿工程研究所招聘高校应届毕业生历年管理单位笔试遴选500模拟题附带答案详解
- 2025-2030年中国新能源汽车行业市场分析报告
- 网站建设合同范本8篇
- 污水站安全培训
- 宜宾天原5万吨氯化法钛白粉环评报告
- 教育机构年度总结和来年规划
- GB/T 44888-2024政务服务大厅智能化建设指南
- 2024年工厂股权转让尽职调查报告3篇
- 创意写作与文学欣赏
- 高空伐树作业施工方案
评论
0/150
提交评论