版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河南省商水县2023-2024学年八年级数学第一学期期末监测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.若=2,则x的值为()A.4 B.8 C.﹣4 D.﹣52.下列各式中,正确的是()A. B. C.=b+1 D.=a+b3.如图,直线l1:y=ax+b和l2:y=bx﹣a在同一坐标系中的图象大致是()A. B.C. D.4.估计的值应在()A.5和6之间 B.6和7之间 C.7和8之间 D.8和9之间5.等腰三角形的两边长分别为和,则它的周长为()A. B. C. D.或6.如图,OP平分∠BOA,PC⊥OA,PD⊥OB,垂足分别是C、D,则下列结论中错误的是()A.PC=PD B.OC=OD C.OC=OP D.∠CPO=∠DPO7.如果分式的值为0,那么的值为()A.-1 B.1 C.-1或1 D.1或08.实数a,b在数轴上对应点的位置如图所示,化简|a|+的结果是()A.-2a+b B.2a-b C.-b D.b9.某校举行运动会,从商场购买一定数量的笔袋和笔记本作为奖品.若每个笔袋的价格比每个笔记本的价格多3元,且用200元购买笔记本的数量与用350元购买笔袋的数量相同.设每个笔记本的价格为x元,则下列所列方程正确的是()A. B. C. D.10.小明学了利用勾股定理在数轴上作一个无理数后,于是在数轴上的2个单位长度的位置找一个点D,然后过点D作一条垂直于数轴的线段CD,CD为3个单位长度,以原点为圆心,OC的长为半径作弧,交数轴正半轴于一点,则该点位置大致在数轴上()A.2和3之间 B.3和4之间 C.4和5之间 D.5和6之间11.如图,在△ABC中,AB的垂直平分线交AB于点D,交BC于点E,若BC=7,AC=6,则△ACE的周长为()A.8 B.11 C.13 D.1512.若分式的值为0,则x的值为()A.-2 B.0 C.2 D.±2二、填空题(每题4分,共24分)13.如图,木匠在做门框时防止门框变形,用一根木条斜着钉好,这样门框就固定了,所运用的数学道理是______________.14.若分式的值为0,则的值是_______.15.在平面直角坐标系中,、,点是轴上一点,且,则点的坐标是__________.16.如图,在△ABC中,∠C=90°,∠A=15°,∠DBC=60°,BC=4,则AD=_____.17.如图,已知直线y=ax+b和直线y=kx交于点P(-4,-2),则关于x,y的二元一次方程组的解是________.18.已知一次函数y=kx+b(k≠0)的图象与x轴交于(﹣5,0),则关于x的一元一次方程kx+b=0的解为_____.三、解答题(共78分)19.(8分)如图,在△ABC中,AB=AC,∠BAC=36°,BD是∠ABC的平分线,交AC于点D,E是AB的中点,连接ED并延长,交BC的延长线于点F,连接AF.求证:(1)EF⊥AB;(2)△ACF为等腰三角形.20.(8分)尺规作图:校园有两条路OA、OB,在交叉路口附近有两块宣传牌C、D,学校准备在这里安装一盏路灯,要求灯柱的位置P离两块宣传牌一样远,并且到两条路的距离也一样远,请你帮助画出灯柱的位置P.(不写画图过程,保留作图痕迹)21.(8分)如图,在等边中,线段为边上的中线.动点在直线上时,以为一边在的下方作等边,连结.(1)求的度数;(2)若点在线段上时,求证:;(3)当动点在直线上时,设直线与直线的交点为,试判断是否为定值?并说明理由.22.(10分)如图,“复兴一号“水稻的实验田是边长为m米的正方形去掉一个边长为n米(m>n)正方形蓄水池后余下的部分,“复兴二号“水稻的试验田是边长为(m-n)米的正方形,两块试验田的水稻都收获了a千克.(1)哪种水稻的单位面积产量高?为什么?(2)高的单位面积产量比低的单位面积产量高多少?23.(10分)已知:如图,点A是线段CB上一点,△ABD、△ACE都是等边三角形,AD与BE相交于点G,AE与CD相交于点F.求证:△AGF是等边三角形.24.(10分)阅读下列材料:在学习“可化为一元一次方程的分式方程及其解法”的过程中,老师提出一个问题:若关于x的分式方程ax-a=1的解为正数,求a经过独立思考与分析后,小杰和小哲开始交流解题思路如下:小杰说:解这个关于x的分式方程,得x=a+1.由题意可得a+1>0,所以a>﹣1,问题解决.小哲说:你考虑的不全面,还必须保证x≠1,即a+1≠1才行.(1)请回答:的说法是正确的,并简述正确的理由是;(2)参考对上述问题的讨论,解决下面的问题:若关于x的方程mx-3-x25.(12分)先化简,再求值:2a-,其中a=小刚的解法如下:2a-=2a-=2a-(a-2)=2a-a+2=a+2,当a=时,2a-=+2小刚的解法对吗?若不对,请改正.26.某校组织一项球类对抗赛,在本校随机调查了若干名学生,对他们每人最喜欢的球类运动进行了统计,并绘制如图1、图2所示的条形和扇形统计图.根据统计图中的信息,解答下列问题:(1)求本次被调查的学生人数,并补全条形统计图;(2)若全校有1500名学生,请你估计该校最喜欢篮球运动的学生人数;(3)根据调查结果,请你为学校即将组织的一项球类比赛提出合理化建议.
参考答案一、选择题(每题4分,共48分)1、B【分析】根据立方根的定义,解答即可.【详解】∵=2,∴x=23=1.故选:B.【点睛】本题主要考查立方根的定义,掌握“若=a,则a3=x”是解题的关键.2、B【分析】等式成立的条件是a=0或a=b时;因式分解法化简分式=;根据分式的基本性质化简=b+.【详解】解:A.与在a=0或a=b时才成立,故选项A不正确;B.==,故选项B正确;C.=b+,故选项C不正确;D.不能化简,故选项D不正确;故选:B.【点睛】本题考查分式的化简,解题关键是熟练掌握分式的基本性质.3、C【分析】根据各选项中的函数图象可知直线l1:y=ax+b经过第一、二、三象限,从而判断出a、b的符号,然后根据a、b的符号确定出l2:y=bx﹣a的图象经过的象限,选出正确答案即可.【详解】解:∵直线l1:经过第一、三象限,∴a>1,∴﹣a<1.又∵该直线与y轴交于正半轴,∴b>1.∴直线l2经过第一、三、四象限.在四个选项中只有选项C中直线l2符合,故选C.【点睛】本题考查了一次函数的图象,一次函数y=kx+b(k≠1),k>1时,一次函数图象经过第一三象限,k<1时,一次函数图象经过第二四象限,b>1时与y轴正半轴相交,b<1时与y轴负半轴相交.4、B【分析】化简原式等于,因为,所以,即可求解;【详解】解:,∵,,故选B.【点睛】本题考查估算无理数的大小;能够将给定的无理数锁定在相邻的两个整数之间是解题的关键.5、C【分析】根据等腰三角形的两腰相等,可知边长为8,8,4或4,4,8,再根据三角形三边关系可知4,4,8不能组成三角形,据此可得出答案.【详解】∵等腰三角形的两边长分别为和,∴它的三边长可能为8cm,8cm,4cm或4cm,4cm,8cm,∵4+4=8,不能组成三角形,∴此等腰三角形的三边长只能是8cm,8cm,4cm8+8+4=20cm故选C.【点睛】本题考查等腰三角形的性质与三角形的三边关系,熟练掌握三角形两边之和大于第三边是解题的关键.6、C【分析】已知OP平分∠BOA,PC⊥OA,PD⊥OB,根据角平分线的性质定理可得PC=PD,在Rt△ODP和Rt△OCP中,利用HL定理判定Rt△ODP≌Rt△OCP,根据全等三角形的性质可得OC=OD,∠CPO=∠DPO,由此即可得结论.【详解】∵OP平分∠BOA,PC⊥OA,PD⊥OB,∴PC=PD(选项A正确),在Rt△ODP和Rt△OCP中,∴Rt△ODP≌Rt△OCP,∴OC=OD,∠CPO=∠DPO(选项B、D正确),只有选项C无法证明其正确.故选C.【点睛】本题考查了角平分线的性质定理及全等三角形的判定与性质,证明Rt△ODP≌Rt△OCP是解决本题的关键.7、B【分析】根据分式的值为零的条件可以求出x的值.【详解】根据题意,得|x|-1=2且x+1≠2,解得,x=1.故选B.【点睛】本题考查了分式的值为零的条件.若分式的值为零,需同时具备两个条件:(1)分子为2;(2)分母不为2.这两个条件缺一不可.8、A【分析】直接利用数轴得出a<0,a−b<0,进而化简得出答案.【详解】由数轴可得:a<0,a−b<0,则原式=−a−(a−b)=b−2a.故选:A.【点睛】此题主要考查了二次根式的性质与化简,正确得出各项符号是解题关键.9、B【解析】试题分析:设每个笔记本的价格为x元,根据“用200元购买笔记本的数量与用350元购买笔袋的数量相同”这一等量关系列出方程即可.考点:由实际问题抽象出分式方程10、B【解析】利用勾股定理列式求出OC,再根据无理数的大小判断即可.解答:解:由勾股定理得,OC=,
∵9<13<16,
∴3<<4,
∴该点位置大致在数轴上3和4之间.
故选B.“点睛”本题考查了勾股定理,估算无理数的大小,熟记定理并求出OC的长是解题的关键.11、C【分析】根据线段垂直平分线的性质得AE=BE,然后利用等线段代换即可得到△ACE的周长=AC+BC,再把BC=7,AC=6代入计算即可.【详解】∵DE垂直平分AB,∴AE=BE,∴△ACE的周长=AC+CE+AE=AC+CE+BE=AC+BC=6+7=1.故选:C.【点睛】本题考查了线段垂直平分线的性质:垂直平分线垂直且平分其所在线段;垂直平分线上任意一点,到线段两端点的距离相等.12、C【解析】由题意可知:,解得:x=2,故选C.二、填空题(每题4分,共24分)13、三角形的稳定性【分析】用一根木条斜着钉好之后就会出现一个三角形,根据三角形的稳定性即可得到答案.【详解】用一根木条斜着钉好之后就会出现一个三角形,因为三角形具有稳定性,所以门框就会固定了.故答案为:三角形的稳定性.【点睛】本题主要考查三角形的稳定性,掌握三角形稳定性的应用是解题的关键.14、-2【分析】根据分式值为零的条件可得x2-4=1,且x﹣2≠1,求解即可.【详解】由题意得:x2-4=1,且x﹣2≠1,解得:x=﹣2故答案为:-2【点睛】此题主要考查了分式的值为零的条件,需同时具备两个条件:(1)分子为1;(2)分母不为1.这两个条件缺一不可.15、(,0)【分析】画图,设点的坐标是(x,0),因为PA=OB,根据勾股定理可得:AC2+PC2=BD2+PD2.【详解】已知如图所示;设点的坐标是(x,0),因为PA=OB根据勾股定理可得:AC2+PC2=BD2+PD2所以32+(x+2)2=42+(4-x)2解得所以点的坐标是(,0)故答案为:(,0)【点睛】考核知识点:勾股定理.数形结合,根据勾股定理建立方程是关键.16、1【分析】根据直角三角形两锐角互余求出∠BDC=30°,然后根据30°角所对的直角边等于斜边的一半求出BD,再求出∠ABC,然后求出∠ABD=15°,从而得到∠ABD=∠A,根据等角对等边可得AD=BD,从而得解.【详解】解:∵∠DBC=60°,∠C=90°,
∴∠BDC=90°-60°=30°,
∴BD=2BC=2×4=1,
∵∠C=90°,∠A=15°,
∴∠ABC=90°-15°=75°,
∴∠ABD=∠ABC-∠DBC=75°-60°=15°,
∴∠ABD=∠A,
∴AD=BD=1.
故答案为:1.【点睛】本题考查了直角三角形30°角所对的直角边等于斜边的一半的性质,直角三角形两锐角互余的性质,等角对等边的性质,熟记性质是解题的关键.17、【分析】直接根据函数图象交点坐标为两函数解析式组成的方程组的解得到答案.【详解】∵直线y=ax+b和直线y=kx交点P的坐标为(-4,-2),
∴关于x,y的二元一次方程组组的解为.
故答案为.【点睛】此题考查一次函数与二元一次方程(组),解题关键在于掌握图像交点的意义.18、x=﹣1.【分析】根据一次函数图象与x轴交点的横坐标就是对应的关于x的一元一次方程的解,可直接得出答案.【详解】解:∵一次函数y=kx+b(k≠0)的图象与x轴交于(﹣1,0),∴关于x的一元一次方程kx+b=0的解为x=﹣1.故答案为x=﹣1.【点睛】本题考查了一次函数与一元一次方程:当某个一次函数的值为0时,求相应的自变量的值.从图象上看,相当于已知直线y=ax+b确定它与x轴的交点的横坐标的值.三、解答题(共78分)19、(1)见解析;(2)见解析.【分析】(1)依据AB=AC,∠BAC=36°,可得∠ABC=72°,再根据BD是∠ABC的平分线,即可得到∠ABD=36°,由∠BAD=∠ABD,可得AD=BD,依据E是AB的中点,即可得到FE⊥AB;(2)依据FE⊥AB,AE=BE,可得FE垂直平分AB,进而得出∠BAF=∠ABF,依据∠ABD=∠BAD,即可得到∠FAD=∠FBD=36°,再根据∠AFC=∠ACB−∠CAF=36°,可得∠CAF=∠AFC=36°,进而得到AC=CF.【详解】证明:(1)∵AB=AC,∠BAC=36°,∴∠ABC=∠ABC=72°.又∵BD是∠ABC的平分线,∴∠ABD=36°.∴∠BAD=∠ABD.∴AD=BD.又∵E是AB的中点,∴DE⊥AB,即EF⊥AB.(2)∵EF⊥AB,AE=BE,∴EF垂直平分AB.∴AF=BF.∴∠BAF=∠ABF.又∵∠ABD=∠BAD,∴∠FAD=∠FBD=36°.又∵∠ACB=72°,∴∠AFC=∠ACB−∠CAF=36°.∴∠CAF=∠AFC=36°.∴AC=CF,即△ACF为等腰三角形.【点睛】本题考查了等腰三角形的判定与性质,解决问题的关键是熟练掌握并能综合运用等腰三角形的判定与性质,线段垂直平分线的判定与性质,三角形外角的性质.20、见解析.【分析】分别作线段CD的垂直平分线和∠AOB的角平分线,它们的交点即为点P.【详解】如图,点P为所作.【点睛】本题考查了作图−应用与设计作图,熟知角平分线的性质与线段垂直平分线的性质是解答此题的关键.21、(1)30°;(2)证明见解析;(3)是定值,.【分析】(1)根据等边三角形的性质可以直接得出结论;(2)根据等边三角形的性质就可以得出,,,,由等式的性质就可以,根据就可以得出;(3)分情况讨论:当点在线段上时,如图1,由(2)可知,就可以求出结论;当点在线段的延长线上时,如图2,可以得出而有而得出结论;当点在线段的延长线上时,如图3,通过得出同样可以得出结论.【详解】(1)是等边三角形,.线段为边上的中线,,.(2)与都是等边三角形,,,,,.在和中,;(3)是定值,,理由如下:①当点在线段上时,如图1,由(2)可知,则,又,,是等边三角形,线段为边上的中线平分,即.②当点在线段的延长线上时,如图2,与都是等边三角形,,,,,,在和中,,,同理可得:,.③当点在线段的延长线上时,与都是等边三角形,,,,,,在和中,,,同理可得:,∵,.综上,当动点在直线上时,是定值,.【点睛】此题考查等边三角形的性质,全等三角形的判定及性质,等边三角形三线合一的性质,解题中注意分类讨论的思想解题.22、(1)“复兴二号”水稻的单位面积产量高,理由见解析;(2)kg【分析】(1)根据题意分别求出两种水稻得单位产量,比较即可得到结果;(2)根据题意列出算式,计算即可得到结果.【详解】(1)根据题意知,“复兴一号“水稻的实验田的面积为,“复兴二号“水稻的实验田的面积为,∴“复兴一号“水稻的实验田的单位产量为(千克/米2),“复兴二号“水稻的实验田的单位产量为(千克/米2),则-==,∵m、n均为正数且m>n,∴-<0,∴“复兴二号”水稻的单位面积产量高;(2)由(1)知,∴高的单位面积产量比低的单位面积产量高(kg).【点睛】本题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.23、见解析【分析】由等边三角形可得AD=AB,AE=AC,∠BAE=∠DAC=120°,再由两边夹一角即可判定△BAE≌△DAC,可得∠1=∠2,进而可得出△BAG≌△DAF,AG=AF,则可得△AGF是等边三角形.【详解】证明:∵△ABD,△ACE都是等边三角形,
∴AD=AB,AE=AC,
∴∠DAE=∠BAD=∠CAE=60°
∴∠BAE=∠DAC=120°,
在△BAE和△DAC中
AD=AB,∠BAE=∠DAC,AE=AC,
∴△BAE≌△DAC.
∴∠1=∠2
在△BAG和△DAF中
∠1=∠2,AB=AD
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 现金出纳年终总结(9篇)
- 2024年新品研发与技术转让合同
- 《基于行为特征的孕期女性辅助产品设计研究》
- 《多中心治理理论视阈下辽宁省县级融媒体中心建设与创新路径研究》
- 《高粱抗蚜性分子数量遗传研究》
- 《基于Keap1-Nrf2-PPARγ通路虾壳活性肽LPLWPY调节斑马鱼抗氧化和脂代谢反应的研究》
- 年度培训计划项目表(5篇)
- 《东北大鼓腔词研究》
- 2024年房产抵押个人借款协议书
- 《YG肉牛养殖专业合作社成本核算研究》
- 2024-2030年辣椒种植行业市场深度分析及发展策略研究报告
- 变电站绿化维护施工方案
- 校园展美 课件 2024-2025学年人美版(2024)初中美术七年级上册
- 2024版《糖尿病健康宣教》课件
- ktv保安管理制度及岗位职责(共5篇)
- 脑出血试题完整版本
- 义务教育信息科技课程标准(2022年版)考试题库及答案
- 建筑施工安全生产责任书
- 新员工三级安全教育考试试题参考答案
- 公司年会策划及执行服务合同
- 概算审核服务投标方案(技术方案)
评论
0/150
提交评论