版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广西崇左市2024届数学八上期末质量检测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.下列调查中,最适合采用全面调查的是()A.端午节期间市场上粽子质量 B.某校九年级三班学生的视力C.央视春节联欢晚会的收视率 D.某品牌手机的防水性能2.如图,直线与直线交于点,则方程组解是()A. B. C. D.3.如图,AB=DB,∠1=∠2,请问添加下面哪个条件不能判断△ABC≌△DBE的是()A.BC=BE B.∠A=∠D C.∠ACB=∠DEB D.AC=DE4.全球芯片制造已经进入纳米到纳米器件的量产时代.中国自主研发的第一台纳米刻蚀机,是芯片制造和微观加工最核心的设备之一.华为手机搭载了全球首款纳米制程芯片,纳米就是米.数据用科学记数法表示为()A. B. C. D.5.下列命题是真命题的是()A.三角形的一个外角大于任何一个内角B.如果两个角相等,那么它们是内错角C.如果两个直角三角形的面积相等,那么它们的斜边相等D.直角三角形的两锐角互余6.下列各因式分解中,结论正确的是()A.B.C.D.7.若,且,则的值可能是()A.0 B.3 C.4 D.58.已知函数图像上三个点的坐标分别是()、()、(),且.那么下列关于的大小判断,正确的是()A. B. C. D.9.下列银行标志中,既不是中心对称图形也不是轴对称图形的是()A. B. C. D.10.下列篆字中,轴对称图形的个数有()A.1个 B.2个 C.3个 D.4个二、填空题(每小题3分,共24分)11.满足的整数的值__________.12.如图,在中,,,点是边上的动点,设,当为直角三角形时,的值是__________.13.点P(4,5)关于x轴对称的点的坐标是___________.14.使有意义的的取值范围为_______.15.如图,所有阴影部分四边形都是正方形,所有三角形都是直角三角形,若正方形B、C、D的面积依次为4、3、9,则正方形A的面积为_______.16.如图,点D、E分别在线段AB,AC上,AE=AD,不添加新的线段和字母,要使△ABE≌△ACD,需添加的一个条件是(只写一个条件即可).17.在中,°,,,某线段,,两点分别在和的垂线上移动,则当__________.时,才能使和全等.18.如图,△ABC中,∠ACB=90°,∠A=25°,将△ABC绕点C逆时针旋转至△DEC的位置,点B恰好在边DE上,则∠θ=_____度.三、解答题(共66分)19.(10分)解分式方程:(1)(2)20.(6分)计算题:(写出解题步骤,直接写答案不得分)(1)-22++|-2|(2)+÷32+(-1)202021.(6分)已知:如图,C是AB上一点,点D,E分别在AB两侧,AD∥BE,且AD=BC,BE=AC.(1)求证:CD=CE;(2)连接DE,交AB于点F,猜想△BEF的形状,并给予证明.22.(8分)我们已经学过将一个多项式分解因式的方法有提公因式法和运用公式法,其实分解因式的方法还有分组分解法、拆项法、字相乘法等等,将一个多项式适当分组后,可提公因式或运用公式继续分解的方法叫做分组分解.例如:利用这种分组的思想方法解决下列问题:(1)分解因式;(2)三边a,b,c满足判断的形状,并说明理由.23.(8分)如图,在中,点在线段上,.(1)求证:(2)当时,求的度数.24.(8分)已知直线与直线.(1)求两直线交点的坐标;(2)求的面积.(3)在直线上能否找到点,使得,若能,请求出点的坐标,若不能请说明理由.25.(10分)(1)在如图所示的平面直角坐标系中表示下面各点:A(0,3);B(5,0);C(3,﹣5);D(﹣3,﹣5);E(3,5);(2)A点到原点的距离是;(3)将点C向x轴的负方向平移6个单位,它与点重合;(4)连接CE,则直线CE与y轴是什么位置关系;(5)点D分别到x、y轴的距离是多少.26.(10分)计算:+(π﹣3.14)1.
参考答案一、选择题(每小题3分,共30分)1、B【分析】直接利用全面调查与抽样调查的意义分析得出答案.【详解】解:A.调查端午节期间市场上粽子质量适合抽样调查;
B.某校九年级三班学生的视力适合全面调查;
C.调查央视春节联欢晚会的收视率适合抽样调查;
D.某品牌手机的防水性能适合抽样调查;
故选:B.【点睛】本题考查了全面调查与抽样调查,正确理解全面调查与抽样调查的意义是解题的关键.2、B【分析】根据一次函数与二元一次方程组的关系解答即可.【详解】∵直线与直线交于点,∴方程组即的解是.故选B.【点睛】本题主要考查一次函数函数与二元一次方程组的关系,函数图象交点坐标为两函数解析式组成的方程组的解.3、D【分析】本题要判定△ABC≌△DBE,已知AB=DB,∠1=∠2,具备了一组边一个角对应相等,对选项一一分析,选出正确答案.【详解】解:A、添加BC=BE,可根据SAS判定△ABC≌△DBE,故正确;
B、添加∠ACB=∠DEB,可根据ASA判定△ABC≌△DBE,故正确.
C、添加∠A=∠D,可根据ASA判定△ABC≌△DBE,故正确;
D、添加AC=DE,SSA不能判定△ABC≌△DBE,故错误;
故选D.【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、SSA、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.4、B【分析】由题意根据绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:数据0.000000007用科学记数法表示为7×10-1.故选:B.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.5、D【分析】根据三角形的外角性质,平行线的判定和直角三角形的性质对各选项分析判断后利用排除法求解.【详解】A、因为三角形的外角大于任何一个与它不相邻的内角,故本选项错误;B.如果两个角相等,那么它们不一定是内错角,故选项B错误;C.如果两个直角三角形的面积相等,那么它们的斜边不一定相等,故选项C错误;D.直角三角形的两锐角互余.正确.故选:D.【点睛】本题考查点较多,熟练掌握概念,定理和性质是解题的关键.6、D【分析】根据因式分解的定义逐项判断即可.【详解】解:A.,变形错误,不是因式分解,不合题意;B.,变形错误,不是因式分解,不合题意;C.,变形错误,不是因式分解,不合题意;D.,变形正确,是因式分解,符合题意.故选:D【点睛】本题考查了因式分解的定义,“将一个多项式变形为几个整式的积的形式叫因式分解”,注意因式分解是一种变形,故等号左右两边要相等.7、A【解析】根据不等式的性质,可得答案.【详解】由不等号的方向改变,得a−3<0,解得a<3,四个选项中满足条件的只有0.故选:A.【点睛】考查不等式的性质3,熟练掌握不等式的性质是解题的关键.8、B【分析】根据图像,利用反比例数的性质回答即可.【详解】解:画出的图像,如图当时,.故选:B【点睛】此题考查了反比例函数图象的性质.反比例函数y=(k≠0)的图象是双曲线;当k>0,双曲线的两支分别位于第一、三象限;当k<0,双曲线的两支分别位于第二、四象限.理解和掌握反比例函数的性质是解题的关键.本题通过图像法解题更简单.9、D【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A、是轴对称图形,也是中心对称图形,故A选项不合题意;B、是轴对称图形,不是中心对称图形,故B选项不合题意;C、是轴对称图形,也是中心对称图形.故C选项不合题意;D、不是轴对称图形,也不是中心对称图形,故D选项符合题意;故选D.【点睛】此题主要考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180°后与原图重合.10、C【分析】根据轴对称图形的概念求解.【详解】根据轴对称图形的定义,是轴对称图形的是图①③④,共有3个.【点睛】本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.二、填空题(每小题3分,共24分)11、3【分析】根据与的取值范围确定整数x的范围.【详解】∵2<<3,3<<4,∴x是大于2小于3的整数,故答案为:3.【点睛】此题考查二次根式的大小,正确确定与的大小是解题的关键.12、或【分析】分两种情况讨论:①∠APB=90°,②∠BAP=90°,分别作图利用勾股定理即可解出.【详解】①当∠APB=90°时,如图所示,在Rt△ABP中,AB=3,∠B=30°,∴AP=AB=∴BP=②当∠BAP=90°时,如图所示,在Rt△ABP中,AB=3,∠B=30°,∴,即解得综上所述,的值为或.故答案为:或.【点睛】本题考查勾股定理的应用,解题的关键是掌握直角三角形中30度所对的直角边是斜边的一半.13、(4,-5)【分析】利用关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数.即点P(x,y)关于x轴的对称点P'的坐标是(x,﹣y),进而得出答案.【详解】点P(4,5)关于x轴对称点的坐标是:(4,﹣5).故答案为:(4,﹣5).【点睛】本题考查了关于x轴对称点的性质,正确把握横纵坐标的关系是解答本题的关键.14、x≤【分析】根据被开方数大于等于0列式进行计算即可得解.【详解】根据题意得,2-4x≥0,
解得x≤.
故答案为:x≤.【点睛】此题考查二次根式有意义的条件,解题关键在于掌握二次根式的被开方数是非负数.15、1【解析】根据勾股定理的几何意义:得到S正方形A+S正方形B=S正方形E,S正方形D﹣S正方形C=S正方形E,求解即可.【详解】由题意:S正方形A+S正方形B=S正方形E,S正方形D﹣S正方形C=S正方形E,∴S正方形A+S正方形B=S正方形D﹣S正方形C.∵正方形B,C,D的面积依次为4,3,9,∴S正方形A+4=9﹣3,∴S正方形A=1.故答案为1.【点睛】本题考查了勾股定理,要熟悉勾股定理的几何意义,知道直角三角形两直角边的平方和等于斜边的平方.16、∠B=∠C(答案不唯一).【解析】由题意得,AE=AD,∠A=∠A(公共角),可选择利用AAS、SAS、ASA进行全等的判定,答案不唯一:添加,可由AAS判定△ABE≌△ACD;添加AB=AC或DB=EC可由SAS判定△ABE≌△ACD;添加∠ADC=∠AEB或∠BDC=∠CEB,可由ASA判定△ABE≌△ACD.17、5㎝或10㎝【分析】本题要分情况讨论:①Rt△ABC≌Rt△QPA,此时AP=BC=5cm,可据此求出P点的位置;②Rt△ABC≌Rt△PQA,此时AP=AC,P、C重合.【详解】解:∵PQ=AB,∴根据三角形全等的判定方法HL可知,当P运动到AP=BC时,在Rt△ABC和Rt△QPA中,∴Rt△ABC≌Rt△QPA(HL),即AP=BC=5cm;当P运动到与C点重合时,在Rt△ABC和Rt△QPA中,∴Rt△ABC≌Rt△PQA(HL),即AP=AC=10cm.故答案为5㎝或10㎝.【点睛】本题考查三角形全等的判定方法和全等三角形的性质,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.由于本题没有说明全等三角形的对应边和对应角,因此要分类讨论,以免漏解.18、1.【解析】根据三角形内角和定理求出∠ABC,根据旋转变换的性质得到∠E=∠ABC=65°,CE=CB,∠ECB=∠DCA,计算即可.【详解】解:∵∠ACB=90°,∠A=25°,∴∠ABC=65°,由旋转的性质可知,∠E=∠ABC=65°,CE=CB,∠ECB=∠DCA,∴∠ECB=1°,∴∠θ=1°,故答案为1.【点睛】本题考查的是旋转变换的性质,掌握对应点与旋转中心所连线段的夹角等于旋转角、旋转前、后的图形全等是解题的关键.三、解答题(共66分)19、(1);(2)【分析】(1)方程左右两边同时乘以,去掉分母,然后按照解整式方程,检验,写出分式方程的解的步骤解方程即可;(2)方程左右两边同时乘以,去掉分母,然后按照解整式方程,检验,写出分式方程的解的步骤解方程即可.【详解】(1)左右两边同乘,得,解整式方程得,,经检验,是原分式方程的解;(2)左右两边同乘,得,解整式方程得,,经检验,是原分式方程的解.【点睛】本题主要考查解分式方程,掌握解分式方程的步骤是解题的关键.20、(1);(2).【分析】(1)分别按照有理数的乘方,算术平方根以及绝对值的化简方法计算,并合并;(2)分别按照求算术平方根,求立方根乘方及有理数的除法等运算即可.【详解】(1)-22++|-2|==;(2)+÷32+(-1)2020=9-3÷9+1=.【点睛】本题考查了实数的混合运算,牢记相关计算法则,并熟练运用,是解题的关键.21、(1)见解析;(2)△BEF为等腰三角形,证明见解析.【分析】(1)先由AD∥BE得出∠A=∠B,再利用SAS证明△ADC≌△BCE即得结论;(2)由(1)可得CD=CE,∠ACD=∠BEC,再利用等腰三角形的性质和三角形的外角性质可得∠BFE=∠BEF,进一步即得结论.【详解】(1)证明:∵AD∥BE,∴∠A=∠B,在△ADC和△BCE中∴△ADC≌△BCE(SAS),∴CD=CE;(2)解:△BEF为等腰三角形,证明如下:由(1)知△ADC≌△BCE,∴CD=CE,∠ACD=∠BEC,∴∠CDE=∠CED,∴∠CDE+∠ACD=∠CED+∠BEC,即∠BFE=∠BEF,∴BE=BF,∴△BEF是等腰三角形.【点睛】本题考查了全等三角形的判定和性质、平行线的性质、三角形的外角性质以及等腰三角形的判定和性质等知识,属于基础题型,难度不大,熟练掌握全等三角形和等腰三角形的判定和性质是解题的关键.22、(1);(2)是等腰三角形,理由见解析【分析】(1)根据题意,先将原多项式分组,分别因式分解后再利用提公因式法因式分解即可;(2)先将等式左侧因式分解,再根据两式相乘等于0,则至少有一个式子的值为0和三角形的三边关系即可得出结论.【详解】解:(1)===(2)是等腰三角形,理由如下∵∴∴∴∵a,b,c是△ABC的三边∴∴∴∴是等腰三角形【点睛】此题考查的是用分组法因式分解和因式分解的应用,掌握因式分解的各个方法是解决此题的关键.23、(1)详见解析;(2)【分析】(1)根据等边对等角可得∠B=∠C,然后利用SAS即可证出结论;(2)根据全等三角形的性质可得然后求出,即可求出结论.【详解】解:(1)证明:∴∠B=∠C在和中,,(2)由(1)知【点睛】此题考查的是等腰三角形的性质和全等三角形的判定及性质,掌握等边对等角和全等三角形的判定及性质是解决此题的关键.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《高原疾病防治知识》课件
- 2025年分期付款化妆品购买合同
- 2025年PPP项目合作物资保障协议
- 二零二五年海洋工程建设项目施工合同6篇
- 二零二五年度PVC管材绿色制造技术合作合同3篇
- 2025年度新能源发电项目租赁合同3篇
- 2025版学校图书馆古籍保护与展示工程合同3篇
- 二零二五年度航空航天器研发与测试合同4篇
- 2025年度住宅小区物业管理权转让与社区安全防范协议
- 二零二五年度文化创意产业经营授权协议
- 2024年云南省中考数学试题含答案解析
- 国家中医药管理局发布的406种中医优势病种诊疗方案和临床路径目录
- 2024年全国甲卷高考化学试卷(真题+答案)
- 汽车修理厂管理方案
- 人教版小学数学一年级上册小学生口算天天练
- (正式版)JBT 5300-2024 工业用阀门材料 选用指南
- 三年级数学添括号去括号加减简便计算练习400道及答案
- 苏教版五年级上册数学简便计算300题及答案
- 澳洲牛肉行业分析
- 计算机江苏对口单招文化综合理论试卷
- 成人学士学位英语单词(史上全面)
评论
0/150
提交评论