三角形全等的判定复习课_第1页
三角形全等的判定复习课_第2页
三角形全等的判定复习课_第3页
三角形全等的判定复习课_第4页
三角形全等的判定复习课_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

三角形全等的判定

复习课全等形全等三角形性质判定全等三角形对应边相等全等三角形对应角相等SSSSASASAAAS一般三角形知识结构图三边对应相等的两个三角形全等(可以简写为“边边边”或“SSS”)。ABCDEF在△ABC和△DEF中∴△ABC≌△DEF(SSS)AB=DEBC=EFCA=FD用符号语言表达为:三角形全等判定方法1知识梳理:三角形全等判定方法2用符号语言表达为:在△ABC与△DEF中∴△ABC≌△DEF(SAS)两边和它们的夹角对应相等的两个三角形全等。(可以简写成“边角边”或“SAS”)知识梳理:FEDCBAAC=DF∠C=∠FBC=EF∠A=∠D(已知)AB=DE(已知)∠B=∠E(已知)在△ABC和△DEF中∴△ABC≌△DEF(ASA)有两角和它们夹边对应相等的两个三角形全等(可以简写成“角边角”或“ASA”)。用符号语言表达为:FEDCBA三角形全等判定方法3知识梳理:知识梳理:思考:在△ABC和△DFE中,当∠A=∠D,∠B=∠E和AC=DF时,能否得到△ABC≌△DFE?三角形全等判定方法4有两角和其中一个角的对边对应相等的两个三角形全等(可以简写成“角角边”或“AAS”)。1、证明两个三角形全等例1:如图,点B在AE上,∠CAB=∠DAB,要使ΔABC≌ΔABD,可补充的一个条件是.分析:现在我们已知A→∠CAB=∠DAB①用SAS,需要补充条件AD=AC,②用ASA,需要补充条件∠CBA=∠DBA,③用AAS,需要补充条件∠C=∠D,④此外,补充条件∠CBE=∠DBE也可以(?)SASASAAASS→AB=AB(公共边).AD=AC∠CBA=∠DBA∠C=∠D∠CBE=∠DBEAC∥FD吗?为什么?如图,∠B=∠E,AB=EF,BD=EC,那么△ABC与△FED全等吗?为什么?FEDCBA4321练习1:如图,AE=AD,要使ΔABD≌ΔACE,请你增加一个条件是.练习2:如图,已知∠1=∠2,AC=AD,增加下列件:①AB=AE,②BC=ED,③∠C=∠D,④∠B=∠E,其中能使ΔABC≌ΔAED的条件有()个.A.4B.3C.2D.12.已知:如图,AB=AC,∠1=∠3,请你再添一个条件,使得∠E=∠D?为什么?1.已知:如图,AB=AC,AD=AE,请你再添一个条件,使得∠E=∠D?为什么?2、证明两个角相等变式题:∵BE=EB(公共边)又∵AC∥DB(已知)∠DBE=∠CEB(两直线平行,内错角相等)例3:如图,AC∥DB,AC=2DB,E是AC的中点,求证:BC=DE证明:∵AC=2DB,AE=EC(已知)∴DB=ECBE=EB∴ΔDBE≌ΔCEB(SAS)∴BC=DE(全等三角形的对应边相等)3、证明两条线段相等例4(2007金华):如图,A,E,B,D在同一直线上,AB=DE,AC=DF,AC∥DF,在ΔABC和ΔDEF,(1)求证:ΔABC≌ΔDEF;(2)你还可以得到的结论是.(写出一个,不再添加其他线段,不再表注或使用其他字母)(1)证明:∵AC∥DF(已知)∴∠A=∠D(两直线平行,内错角相等)AB=DE(已知)∠A=∠D(已证)AC=DF(已知)∴ΔABC≌ΔDEF(SAS)在ΔABC和ΔDEF中综合题:(2)解:根据”全等三角形的对应边(角)相等”可知:②∠C=∠F,③∠ABC=∠DEF,④EF∥BC,⑤AE=DB等①BC=EF,变式3:如图,点C为线段AB延长线上一点,⊿AMC,⊿BNC为正三角形,且在线段AB同侧,求证AN=MBABCNM分析:此中考题与原题相比较,只是两个三角形的位置不同,此图的两个三角形重叠在一起,增加了难度,其证明方法与前题基本相同,只须证明⊿ABN≌⊿MNB作业数学课本P110~1113,4,6数学练习册第三课时1.证明两个三角形全等,要结合题目的条件和结论,选择恰当的判定方法

2.全等三角形,是证明两条线段或两个角相等的重要方法之一,证明时

①要观察待证的线段或角,在哪两个可能全等的三角形中。②分析要证

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论