版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东省汕头市龙湖实验中学2023年八上数学期末检测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.下列运算中,不正确的是()A. B. C. D.2.下列运算中,正确的是()A. B. C. D.3.如果某多边形的每个内角的大小都是其相邻外角的3倍,那么这个多边形是()A.六边形 B.八边形 C.正六边形 D.正八边形4.立方根等于本身的数是()A.-1 B.0 C.±1 D.±1或05.下面的图形中对称轴最多的是()A. B.C. D.6.若(x+a)(x+b)的积中不含x的一次项,那么a与b一定是()A.互为相反数 B.互为倒数 C.相等 D.a比b大7.要反映台州市某一周每天的最高气温的变化趋势,宜采用()A.条形统计图 B.扇形统计图C.折线统计图 D.频数分布统计图8.若,,则的值为()A.1 B. C.6 D.9.若分式的值等于0,则的值为()A. B. C. D.10.如图,中,,于,平分,且于,与相交于点,是边的中点,连接与相交于点,下列结论正确的有()个①;②;③;④是等腰三角形;⑤.A.个 B.个 C.个 D.个二、填空题(每小题3分,共24分)11.如果多边形的每个内角都等于,则它的边数为______.12.规定,若,则x的值是_____.13.计算的结果是____________.14.命题“如果两个角都是直角,那么这两个角相等”的逆命题是_____.15.命题“三角形的三个内角中至少有两个锐角”是_____(填“真命题”或“假命题”).16.如图,在△ABC中,∠BAC=30°,∠ACB=45°,BD∥AC,BD=AB,且C,D两点位于AB所在直线两侧,射线AD上的点E满足∠ABE=60°.(1)∠AEB=___________°;(2)图中与AC相等的线段是_____________,证明此结论只需证明△________≌△_______.17.如图,OA=OB,OC=OD,∠O=50°,∠D=35°,则∠AEC=________.18.因式分解:3x3﹣12x=_____.三、解答题(共66分)19.(10分)(1)已知a2+b2=6,ab=1,求a﹣b的值;(2)已知a=,求a2+b2的值.20.(6分)已知y是x的一次函数,当时,;当时,,求:(1)这个一次函数的表达式和自变量x的取值范围(2)当时,自变量x的值(3)当时,自变量x的取值范围.21.(6分)请写出求解过程(1)一个多边形的内角和是720°,求这个多边形的边数.(2)在△ABC中,∠C=90°,∠A=2∠B,求∠A,∠B的度数.22.(8分)直线与轴相交于点,与轴相交于点.(1)求直线与坐标轴围成的面积;(2)在轴上一动点,使是等腰三角形;请直接写出所有点的坐标,并求出如图所示时点的坐标;(3)直线与直线相交于点,与轴相交于点;点是直线上一点,若的面积是的面积的两倍,求点的坐标.23.(8分)如图,在中,,点为边上的动点,点从点出发,沿边向点运动,当运动到点时停止,若设点运动的时间为秒,点运动的速度为每秒2个单位长度.(1)当时,=,=;(2)求当为何值时,是直角三角形,说明理由;(3)求当为何值时,,并说明理由.24.(8分)已知矩形ABCD的一条边AD=8,E是BC边上的一点,将矩形ABCD沿折痕AE折叠,使得顶点B落在CD边上的点P处,PC=4(如图1).(1)求AB的长;(2)擦去折痕AE,连结PB,设M是线段PA的一个动点(点M与点P、A不重合).N是AB沿长线上的一个动点,并且满足PM=BN.过点M作MH⊥PB,垂足为H,连结MN交PB于点F(如图2).①若M是PA的中点,求MH的长;②试问当点M、N在移动过程中,线段FH的长度是否发生变化?若变化,说明理由;若不变,求出线段FH的长度.25.(10分)勾股定理神秘而美妙,它的证法多样,其巧妙各有不同,当两个全等的直角三角形如图摆放时,可以用“面积法”来证明.将两个全等的直角三角形按如图所示摆放,其中∠DAB=90°,求证:a1+b1=c1.26.(10分)解下列方程并检验(1)(2)
参考答案一、选择题(每小题3分,共30分)1、D【分析】根据同底数幂乘法、单项式除以单项式、积的乘方、幂的乘方进行计算,然后分别进行判断,即可得到答案.【详解】解:A、,正确;B、,正确;C、,正确;D、,故D错误;故选:D.【点睛】本题考查了同底数幂乘法、单项式除以单项式、积的乘方、幂的乘方,解题的关键是熟练掌握所学的运算法则进行解题.2、D【分析】根据同底数幂乘法、幂的乘方、积的乘方、单项式的乘法等公式计算问题可解【详解】解:A.,故A错误;B.,故B错误;C.,故C错误;D.正确故应选D【点睛】本题考查了同底数幂乘法、幂的乘方、积的乘方、单项式的乘法等知识点,解答关键是根据运算法则进行计算.3、D【解析】设出外角的度数,利用外角与相邻内角和为120°求得外角度数,360°÷这个外角度数的结果就是所求的多边形的边数.【详解】解:设正多边形的每个外角为x度,则每个内角为3x度,∴x+3x=120,解得x=1.∴多边形的边数为360°÷1°=2.故选D.【点睛】本题考查了多边形内角与外角,用到的知识点为:多边形一个顶点处的内角与外角的和为120°;正多边形的边数等于360÷正多边形的一个外角度数,解题关键是熟练掌握多边形内角与外角之间的关系.4、D【分析】根据立方根的定义得到立方根等于本身的数.【详解】解:∵立方根是它本身有3个,分别是±1,1.故选:D.【点睛】本题主要考查了立方根的性质.对于特殊的数字要记住,立方根是它本身有3个,分别是±1,1.立方根的性质:(1)正数的立方根是正数.(2)负数的立方根是负数.(3)1的立方根是1.5、B【分析】分别得出各选项对称轴的条数,进而得出答案.【详解】A、有1条对称轴;
B、有4条对称轴;
C、有1条对称轴;
D、有2条对称轴;
综上可得:对称轴最多的是选项B.
故选:B.【点睛】本题主要考查了轴对称变换,正确得出每个图形的对称轴是解题关键.6、A【分析】先用多项式乘以多项式的运算法则展开求它们的积,并且把看作常数合并关于的同类项,的一次项系数为0,得出的关系.【详解】∵又∵的积中不含的一次项∴∴与一定是互为相反数故选:A.【点睛】本题考查了多项式乘多项式法则,注意当要求多项式中不含有哪一项时,应让这一项的系数为0.7、C【解析】根据题意,得要求直观反映长沙市一周内每天的最高气温的变化情况,结合统计图各自的特点,应选择折线统计图.故选C.8、C【分析】原式首先提公因式,分解后,再代入求值即可.【详解】∵,,∴.故选:C.【点睛】本题主要考查了提公因式分解因式,关键是正确确定公因式.9、B【分析】化简分式即可求解,注意分母不为0.【详解】解:===0∴x=2,经检验:x+2≠0,x=2是原方程的解.故选B.【点睛】本题考查解分式方程;熟练掌握因式分解的方法,分式方程的解法是解题的关键.10、B【分析】只要证明△BDF≌△CDA,△BAC是等腰三角形,∠DGF=∠DFG=67.5°,即可判断①②③④正确,作GM⊥BD于M,只要证明GH<DG即可判断⑤错误.【详解】∵CD⊥AB,BE⊥AC,∴∠BDC=∠ADC=∠AEB=90°,∴∠A+∠ABE=90°,∠ABE+∠DFB=90°,∴∠A=∠DFB,∵∠ABC=45°,∠BDC=90°,∴∠DCB=90°−45°=45°=∠DBC,∴BD=DC,在△BDF和△CDA中,∴△BDF≌△CDA(AAS),∴BF=AC,故①正确.∵∠ABE=∠EBC=22.5°,BE⊥AC,∴∠A=∠BCA=67.5°,故③正确,∴BA=BC,∵BE⊥AC,∴AE=EC=AC=BF,故②正确,∵BE平分∠ABC,∠ABC=45°,∴∠ABE=∠CBE=22.5°,∵∠BDF=∠BHG=90°,∴∠BGH=∠BFD=67.5°,∴∠DGF=∠DFG=67.5°,∴DG=DF,故④正确.作GM⊥AB于M.∵∠GBM=∠GBH,GH⊥BC,∴GH=GM<DG,∴S△DGB>S△GHB,∵S△ABE=S△BCE,∴S四边形ADGE<S四边形GHCE.故⑤错误,∴①②③④正确,故选:B.【点睛】此题是三角形综合题,考查了等腰三角形的性质,直角三角形的性质,全等三角形的性质和判定,三角形的面积等知识点的综合运用,第五个问题难度比较大,添加辅助线是解题关键,属于中考选择题中的压轴题.二、填空题(每小题3分,共24分)11、1【分析】先求出这个多边形的每一个外角的度数,再用360°除以外角的度数即可得到边数.【详解】∵多边形的每一个内角都等于150°,∴多边形的每一个外角都等于180°﹣150°=30°,∴边数n=360°÷30°=1.故答案为1.【点睛】本题考查了多边形的内角与外角的关系,求出每一个外角的度数是解答本题的关键.12、【分析】根据题中的新定义化简所求式子,计算即可求出的值.【详解】∵,根据题意得到分式方程:,
整理,得:,解得:,经检验,是分式方程的解,
故答案是:.【点睛】本题考查了解分式方程,弄清题中的新定义是解本题的关键.注意解分式方程需检验.13、【分析】原式利用多项式乘以多项式法则计算,合并即可得到结果.【详解】解:=故答案为:【点睛】此题考查了多项式乘多项式,熟练掌握运算法则是解本题的关键.14、如果两个角相等,那么两个角都是直角【解析】试题分析:将一个命题的题设和结论互换即可得到原命题的逆命题,所以命题“如果两个角都是直角,那么这两个角相等”的逆命题是如果两个角相等,那么这两个角都是直角.考点:命题与逆命题.15、真命题【分析】根据三角形内角和为180°进行判断即可.【详解】∵三角形内角和为180°,∴三角形的三个内角中至少有两个锐角,是真命题;故答案为真命题.【点睛】本题考查命题与定理.判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.16、45BEABCBDE【分析】(1)由平行线和等腰三角形的性质得出∠BDA=∠BAD=75°,求出∠DBE=∠ABE-∠ABD=30°,由三角形的外角性质即可得出答案;(2)证出△ABC≌△BDE(AAS),得出AC=BE;即可得出答案.【详解】解:(1)∵BD∥AC,∴∠ABD=∠BAC=30°,∵BD=AB,∴∠BDA=∠BAD=(180°-30°)=75°,∵∠ABE=60°,∴∠DBE=∠ABE-∠ABD=30°,∴∠AEB=∠ADB-∠DBE=75°-30°=45°;故答案为:45°;(2)在△ABC和△BDE中,∴△ABC≌△BDE(AAS),∴AC=BE;故答案为:BE,ABC,BDE.【点睛】本题考查了全等三角形的判定与性质、等腰三角形的性质、平行线的性质、三角形的外角性质等知识;熟练掌握全等三角形的判定和等腰三角形的性质是解题的关键.17、60°【分析】本题需先证出△BOC≌△AOD,求出∠C,再求出∠DAC,最后根据三角形的内角和定理即可求出答案.【详解】在△BOC和△AOD中,∵OA=OB,∠O=∠O,OC=OD,∴△BOC≌△AOD,∴∠C=∠D=35°.∵∠DAC=∠O+∠D=50°+35°=85°,∴∠AEC=180°﹣∠DAC﹣∠C=180°﹣85°﹣35°=60°.故答案为60°.【点睛】本题主要考查了全等三角形的判定和性质,在解题时要注意和三角形的内角和定理相结合是本题的关键.18、3x(x+2)(x﹣2)【分析】先提公因式3x,然后利用平方差公式进行分解即可.【详解】3x3﹣12x=3x(x2﹣4)=3x(x+2)(x﹣2),故答案为3x(x+2)(x﹣2).【点睛】本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.三、解答题(共66分)19、(1)±1;(1)1.【分析】(1)先根据完全平方公式进行变形,再代入求出即可;(1)先分母有理化,再根据完全平方公式和平方差公式即可求解.【详解】(1)由a1+b1=6,ab=1,得a1+b1-1ab=4,(a-b)1=4,a-b=±1.(1),,【点睛】本题考查了分母有理化、完全平方公式的应用,能灵活运用公式进行变形是解此题的关键.20、(1)y=-x+5,自变量x的取值范围是:x取任意实数;(2)x=-2;(3)x<4.【分析】(1)由待定系数法即可求解;(2)把代入一次函数解析式,解关于x的一元一次方程,即可;(3)由,可得关于x的一元一次不等式,解不等式,即可.【详解】(1)∵y是x的一次函数,∴设y=kx+b,把,;,,代入y=kx+b,得到:,解得:k=-1,b=5,∴一次函数的解析式为:y=-x+5,自变量x的取值范围是:x取任意实数;(2)当y=7时,7=-x+5,解得:x=-2;(3)当时,即-x+5>1,解得:x<4.【点睛】本题主要考查待定系数法求一次函数解析式,根据条件列出方程(组)或不等式,是解题的关键.21、(1)6;(2)∠B=30°,∠A=60°【分析】(1)设这个多边形的边数为n,根据多边形的内角和定理得到(n-2)×180°=720°,然后解方程即可.(2)首先根据在Rt△ABC中,∠C=90°,可得∠A+∠B=90°;然后根据∠A=2∠B,求出∠A,∠B的度数各是多少即可.【详解】(1)解:设这个多边形的边数为n(n-2)180°=720°n=6答:这个多边形的边数为6(2)解:在△ABC中,∵∠C=90°∴∠A+∠B=90°又∵∠A=2∠B∴2∠B+∠B=90∴∠B=30°∴∠A=60°【点睛】此题考查多边形的内角和定理,直角三角形的性质和应用,解题关键是根据n边形的内角和为(n-2)×180°解答.22、(1);(2)所有P点的坐标,点P的坐标;(3)或.【分析】(1)先求出OA,OB的长度,然后利用面积公式即可求解;(2)是等腰三角形,分三种情况讨论:若时;若时;若时,图中给出的情况是时,设,利用勾股定理即可求出x的值,从而可确定P的坐标;(3)先求出点C的坐标,然后根据面积之间的关系求出D的纵坐标,然后将纵坐标代入直线CD中即可求出横坐标.【详解】(1)当时,,,;当时,,,;∴的面积;(2)是等腰三角形,分三种情况讨论:若时,有,此时;若时,此时或;若时,设,则,由,得:∴此时;(3)由以及得,所以,∵的面积是的面积的两倍,∴点的纵坐标为或,把代入得,把代入得因此或.【点睛】本题主要考查一次函数与几何综合,数形结合及分情况讨论是解题的关键.23、(1)CD=4,AD=16;(2)当t=3.6或10秒时,是直角三角形,理由见解析;(3)当t=7.2秒时,,理由见解析【分析】(1)根据CD=速度×时间列式计算即可得解,利用勾股定理列式求出AC,再根据AD=AC-CD代入数据进行计算即可得解;
(2)分①∠CDB=90°时,利用△ABC的面积列式计算即可求出BD,然后利用勾股定理列式求解得到CD,再根据时间=路程÷速度计算;②∠CBD=90°时,点D和点A重合,然后根据时间=路程÷速度计算即可得解;
(3)过点B作BF⊥AC于F,根据等腰三角形三线合一的性质可得CD=2CF,再由(2)的结论解答.【详解】解:(1)t=2时,CD=2×2=4,
∵∠ABC=90°,AB=16,BC=12,∴AD=AC-CD=20-4=16;(2)①∠CDB=90°时,∴解得BD=9.6,∴t=7.2÷2=3.6秒;
②∠CBD=90°时,点D和点A重合,
t=20÷2=10秒,
综上所述,当t=3.6或10秒时,是直角三角形;
(3)如图,过点B作BF⊥AC于F,
由(2)①得:CF=7.2,
∵BD=BC,∴CD=2CF=7.2×2=14.4,
∴t=14.4÷2=7.2,
∴当t=7.2秒时,,【点睛】本题考查了勾股定理,等腰三角形的判定与性质,三角形的面积,熟练掌握相关的知识是解题的关键24、(1)1;(2);.【解析】试题分析:(1)设AB=x,根据折叠可得AP=CD=x,DP=CD-CP=x-4,利用勾股定理,在Rt△ADP中,AD2+DP2=AP2,即82+(x-4)2=x2,即可解答;(2)①过点A作AG⊥PB于点G,根据勾股定理求出PB的长,由AP=AB,所以PG=BG=PB=,在Rt△AGP中,AG=,由AG⊥PB,MH⊥PB,所以MH∥AG,根据M是PA的中点,所以H是PG的中点,根据中位线的性质得到MH=AG=.②作MQ∥AN,交PB于点Q,求出MP=MQ,BN=QM,得出MP=MQ,根据MH⊥PQ,得出HQ=PQ,根据∠QMF=∠BNF,证出△MFQ≌△NFB,得出QF=QB,再求出EF=PB,最后代入HF=PB即可得出线段EF的长度不变.试题解析:(1)设AB=x,则AP=CD=x,DP=CD-CP=x-4,在Rt△ADP中,AD2+DP2=AP2,即82+(x-4)2=x2,解得:x=1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度食堂蔬菜采购合同模板
- 2024年度环保过滤用石料供应合同2篇
- 2024年度健身房经营与会员管理合同3篇
- 2024全新研学旅行课程资源整合合同2篇
- 2024年度外贸居间业务利润分配协议2篇
- 固体物理知到智慧树章节测试课后答案2024年秋牡丹江师范学院
- 电工技术基础与技能知到智慧树章节测试课后答案2024年秋德州市陵城区职业中等专业学校
- 2024年度网络侵权纠纷起诉书范本6篇
- 2024年南太平洋地区教育交流协议3篇
- 2024年二手农机交易条款3篇
- 钢丝绳在卷筒上旋向的判断
- 西班牙授权书委托书格式委托书
- 旅游学基础-河南大学中国大学mooc课后章节答案期末考试题库2023年
- GB/T 19367-2022人造板的尺寸测定
- 人教版高中历史 第13课 辛亥革命 【公开课教学PPT课件】
- 补全句子专项预习(试题)外研版英语三年级上册
- 药理学题库(含答案)
- Minitab-培训教程大全-500多页
- 水质工程学课程设计
- 河北省工程质量材料检验收费标准
- GB/T 36073-2018数据管理能力成熟度评估模型
评论
0/150
提交评论