福建省福州市鼓楼区福州屏东中学2024届八年级数学第一学期期末学业水平测试模拟试题含解析_第1页
福建省福州市鼓楼区福州屏东中学2024届八年级数学第一学期期末学业水平测试模拟试题含解析_第2页
福建省福州市鼓楼区福州屏东中学2024届八年级数学第一学期期末学业水平测试模拟试题含解析_第3页
福建省福州市鼓楼区福州屏东中学2024届八年级数学第一学期期末学业水平测试模拟试题含解析_第4页
福建省福州市鼓楼区福州屏东中学2024届八年级数学第一学期期末学业水平测试模拟试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

福建省福州市鼓楼区福州屏东中学2024届八年级数学第一学期期末学业水平测试模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.如图,A和B两地在一条河的两岸,现要在河上造一座桥MN,使从A到B的路径AMNB最短的是(假定河的两岸是平行直线,桥要与河岸垂直)()A. B. C. D.2.如图,在△ABC中,AB=AC,D是BC的中点,AC的垂直平分线交AC,AD,AB于点E,O,F,则图中全等三角形的对数是()A.1对 B.2对 C.3对 D.4对3.如图,已知中,点是、角平分线的交点,点到边的距离为3,且的面积为6,则的周长为()A.6 B.4 C.3 D.无法确定4.某射击运动员练习射击,5次成绩分别是:8、9、7、8、(单位:环),下列说法中正确的个数是()①若这5次成绩的平均数是8,则;②若这5次成绩的中位数为8,则;③若这5次成绩的众数为8,则;④若这5次成绩的方差为8,则A.1个 B.2个 C.3个 D.4个5.如图所示,在中,,D为的中点,过点D分别向,作垂直线段、,则能直接判定的理由是()A. B. C. D.6.下列美术字中,不属于轴对称图形的是()A. B. C. D.7.如图,是一块直径为2a+2b的圆形钢板,从中挖去直径分别为2a、2b的两个圆,则剩下的钢板的面积为()A. B. C. D.8.若点A(3,y1),B(1,y2)都在直线y=-x+2上,则y1与y2的大小关系是()A.y1<y2 B.y1=y2 C.y1>y2 D.无法比较大小9.如图,在△ABC中,DE是AC的垂直平分线,且分别交BC,AC于点D和E,∠B=60°,∠C=25°,则∠BAD为()A.50° B.70° C.75° D.80°10.如图,圆的直径为1个单位长度,圆上的点A与数轴上表示-1的点重合,将该圆沿数轴滚动一周,点A到达的位置,则点表示的数是()A. B. C. D.二、填空题(每小题3分,共24分)11.某住宅小区有一块草坪如图四边形,已知米,米,米,米,且,则这块草坪的面积为________平方米.12.已知关于的一元二次方程有两个不相等的实数根,则的取值范围是__________.13.小李和小林练习射箭,射完10箭后两人的成绩如图所示,通常新手的成绩不太稳定,根据图中的信息,估计这两人中的新手是_____.14.如图,在△ABC中,分别以点A和点B为圆心,大于AB的长为半径画弧,两弧相交于点M,N,作直线MN,交BC于点D,连接AD.若△ADC的周长为10,AB=8,则△ABC的周长为______.15.36的平方根是____,的算术平方根是___,的绝对值是___.16.腰长为4的等腰直角放在如图所示的平面直角坐标系中,点A、C均在y轴上,C(0,2),∠ACB=90,AC=BC=4,平行于y轴的直线x=-2交线段AB于点D,点P是直线x=-2上一动点,且在点D的上方,当时,以PB为直角边作等腰直角,则所有符合条件的点M的坐标为________.17.如图,长方形两边长,两顶点分别在轴的正半轴和轴的正半轴上运动,则顶点到原点的距离最大值是__________.18.在平面直角坐标系中,点A(2,3)与点B关于x轴对称,则点B的坐标为.三、解答题(共66分)19.(10分)如图,为等边三角形,平分交于点,交于点.(1)求证:是等边三角形.(2)求证:.20.(6分)我校八年级有800名学生,在体育中考前进行一次排球模拟测试,从中随机抽取部分学生,根据其测试成绩制作了下面两个统计图,请根据相关信息,解答下列问题:(1)本次抽取到的学生人数为________,图2中的值为_________.(2)本次调查获取的样本数据的平均数是__________,众数是________,中位数是_________.(3)根据样本数据,估计我校八年级模拟体测中得12分的学生约有多少人?21.(6分)如图,已知:△ABC中,AB=AC,M是BC的中点,D、E分别是AB、AC边上的点,且BD=CE.求证:MD=ME.22.(8分)在平面直角坐标系中,直线AB分别交x轴、y轴于点A(–a,0)、点B(0,b),且a、b满足a2+b2–4a–8b+20=0,点P在直线AB的右侧,且∠APB=45°.(1)a=;b=.(2)若点P在x轴上,请在图中画出图形(BP为虚线),并写出点P的坐标;(3)若点P不在x轴上,是否存在点P,使△ABP为直角三角形?若存在,请求出此时P的坐标;若不存在,请说明理由.23.(8分)等腰Rt△ABC中,∠BAC=90°,点A、点B分别是y轴、x轴上的两个动点,点C在第三象限,直角边AC交x轴于点D,斜边BC交y轴于点E.(1)若A(0,1),B(2,0),画出图形并求C点的坐标;(2)若点D恰为AC中点时,连接DE,画出图形,判断∠ADB和∠CDE大小关系,说明理由.24.(8分)如图,△ABC与△DCB中,AC与BD交于点E,且∠A=∠D,AB=DC(1)求证:△ABE≌DCE;(2)当∠AEB=50°,求∠EBC的度数.25.(10分)小明元旦前到文具超市用15元买了若干练习本,元旦这一天,该超市开展优惠活动,同样的练习本比元旦前便宜0.2元,小明又用20.7元钱买练习本,所买练习本的数量比上一次多50%,小明元旦前在该超市买了多少本练习本?26.(10分)按要求计算:(1)计算:(2)因式分解:①②(3)解方程:

参考答案一、选择题(每小题3分,共30分)1、D【分析】过A作河岸的垂线AH,在直线AH上取点I,使AI等于河宽,连接BI即可得出N,作出MN⊥a即可得到M,连接AM即可.【详解】解:根据河的两岸是平行直线,桥要与河岸垂直可知,只要AM+BN最短就符合题意,即过A作河岸a的垂线AH,垂足为H,在直线AH上取点I,使AI等于河宽.连结IB交河岸b于N,作MN垂直于河岸交河岸a于M点,连接AM.故选D.【点睛】本题考查了最短路线问题以及三角形三边关系定理的应用,关键是找出M、N的位置.2、D【详解】试题分析:∵D为BC中点,∴CD=BD,又∵∠BDO=∠CDO=90°,∴在△ABD和△ACD中,,∴△ABD≌△ACD;∵EF垂直平分AC,∴OA=OC,AE=CE,在△AOE和△COE中,,∴△AOE≌△COE;在△BOD和△COD中,,∴△BOD≌△COD;在△AOC和△AOB中,,∴△AOC≌△AOB;所以共有4对全等三角形,故选D.考点:全等三角形的判定.3、B【解析】根据题意过O分别作,连接OB,利用角平分线上的点到角两边的距离相等,得出进行分析即可.【详解】解:由题意过O分别作,连接OB如图所示:∵点是、角平分线的交点,∴,∵点到边的距离为3,即,的面积为6,∴,∴,即的周长为4.故选:B.【点睛】本题考查角平分线的性质,熟练掌握并利用角平分线上的点到角两边的距离相等是解题的关键.4、A【分析】根据中位数,平均数,众数和方差的概念逐一判断即可.【详解】①若这5次成绩的平均数是8,则,故正确;②若这5次成绩的中位数为8,则可以任意数,故错误;③若这5次成绩的众数为8,则只要不等于7或9即可,故错误;④若时,方差为,故错误.所以正确的只有1个故选:A.【点睛】本题主要考查数据的分析,掌握平均数,中位数,众数,方差的求法是解题的关键.5、D【分析】根据AAS证明△BDE≌△CDF即可.【详解】解:∵D为BC中点,

∴BD=CD,

∵由点D分别向AB、AC作垂线段DE、DF,

∴∠DEB=∠DFC=90°,

在△BDE与△CDF中,∴△BDE≌△CDF(AAS)

故选:D.【点睛】本题考查了全等三角形的判定;判定方法有ASA、AAS、SAS、SSS等,在选择时要结合其它已知在图形上的位置进行选取.6、A【解析】根据轴对称图形的定义逐项识别即可,一个图形的一部分,以某条直线为对称轴,经过轴对称能与图形的另一部分重合,这样的图形叫做轴对称图形.【详解】由轴对称图形的定义定义可知,A不是轴对称图形,B、C、D都是轴对称图形.故选A.【点睛】本题考查了轴对称图形的识别,熟练掌握轴对称图形的定义是解答本题的关键.7、B【分析】剩下钢板的面积等于大圆的面积减去两个小圆的面积,利用圆的面积公式列出关系式,化简即可.【详解】解:=--===,故选:B【点睛】此题考查了整式的混合运算,涉及的知识有:圆的面积公式,完全平方公式,去括号、合并同类项法则,熟练掌握公式及法则是解本题的关键.8、C【分析】分别把点A和点B代入直线,求出、的值,再比较出其大小即可.【详解】解:分别把点A和点B代入直线,,,∵>,∴>,故选:C.【点睛】本题主要考察了比较一次函数值的大小,正确求出A、B两点的纵坐标是解题的关键.9、B【解析】分析:根据线段垂直平分线的性质得到DA=DC,根据等腰三角形的性质得到∠DAC=∠C,根据三角形内角和定理求出∠BAC,计算即可.详解:∵DE是AC的垂直平分线,∴DA=DC,∴∠DAC=∠C=25°,∵∠B=60°,∠C=25°,∴∠BAC=95°,∴∠BAD=∠BAC-∠DAC=70°,故选B.点睛:本题考查的是线段垂直平分线的性质、等腰三角形的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.10、D【解析】先求出圆的周长,再根据数轴的特点进行解答即可.【详解】∵圆的直径为1个单位长度,∴此圆的周长=π,∴当圆向左滚动时点A′表示的数是-π-1;当圆向右滚动时点A′表示的数是π-1.故选:D.【点睛】本题考查的是实数与数轴的特点,熟知实数与数轴上的点是一一对应关系是解答此题的关键.二、填空题(每小题3分,共24分)11、2【分析】连接AC,先根据勾股定理求出AC的长,然后利用勾股定理的逆定理证明△ACD为直角三角形.从而用求和的方法求面积.【详解】连接AC,∵米,米,且∴∴米,∵米,米,∴AC1+DC1=AD1,∴∠ACD=90°.这块草坪的面积=SRt△ABC+SRt△ACD=AB•BC+AC•DC=(3×4+5×11)=2米1.故答案为:2.【点睛】此题主要考查了勾股定理的运用及直角三角形的判定等知识点.12、且.【分析】根据一元二次方程的定义,得到m-2≠0,解之,根据“一元二次方程(m-2)x2+x-1=0有两个不相等的实数根”,结合判别式公式,得到一个关于m的不等式,解之,取两个解集的公共部分即可.【详解】根据题意得:,解得:,解得:,综上可知:且,故答案为:且.【点睛】本题考查了根的判别式,一元二次方程的定义,正确掌握根的判别式公式,一元二次方程的定义是解题的关键.13、小李.【详解】解:根据图中的信息找出波动性大的即可:根据图中的信息可知,小李的成绩波动性大,则这两人中的新手是小李.故答案为:小李.14、1【分析】利用基本作图得到MN垂直平分AB,则DA=DB,利用等线段代换得到BC+AC=10,然后计算△ABC的周长.【详解】由作法得MN垂直平分AB,∴DA=DB,∵△ADC的周长为10,∴DA+CD+AC=10,∴DB+CD+AC=10,即BC+AC=10,∴△ABC的周长=BC+AC+AB=10+8=1.故答案为1.【点睛】本题考查了作图-基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线),也考查了线段垂直平分线的性质.15、±62【分析】根据平方根、算术平方根、绝对值的定义求解即可.【详解】由题意,得36的平方根是±6;的算术平方根是2;的绝对值是;故答案为:±6;2;.【点睛】此题主要考查对平方根、算术平方根、绝对值的应用,熟练掌握,即可解题.16、或或或【分析】根据等腰直角三角形存在性问题的求解方法,通过分类讨论,借助全等的辅助,即可得解.【详解】∵,AC=BC=4,平行于y轴的直线交线段AB于点D,∴∵∴∴PD=2∴以PB为直角边作等腰直角如下图,作⊥于R∵,∴∴,RP=BS=2∴;以PB为直角边作等腰直角同理可得;以PB为直角边作等腰直角同理可得;以PB为直角边作等腰直角同理可得,∴M的坐标为或或或,故答案为:或或或.【点睛】本题主要考查了等腰直角三角形的存在性问题,通过面积法及三角形全等的判定和性质进行求解是解决本题的关键.17、【分析】取AB的中点E,连接OE,DE,易得O,D之间的最大距离为OE+DE,分别求出OE,DE的长,即可得出答案.【详解】如图,取AB的中点E,连接OE,DE,∵AB=4∴AE=2∵四边形ABCD为矩形∴∠DAE=90°∵AD=2,AE=2∴DE=∵在Rt△AOB中,E为斜边AB的中点,∴OE=AB=2又∵OD≤OE+DE∴点到原点的距离最大值=OE+DE=故答案为:.【点睛】本题考查矩形的性质,直角三角形斜边中线的性质,熟记直角三角形斜边上的中线等于斜边的一半,正确作出辅助线是解题的关键.18、(2,-3)【分析】平面直角坐标系中任意一点P(x,y),关于x轴的对称点的坐标是(x,-y),据此即可求得点(2,3)关于x轴对称的点的坐标.【详解】∵点(2,3)关于x轴对称;

∴对称的点的坐标是(2,-3).

故答案为(2,-3).三、解答题(共66分)19、(1)见解析;(2)见解析【分析】(1)根据等边三角形的性质和平行线的性质证明即可.

(2)根据等边三角形的性质解答即可.【详解】(1)∵△ABC为等边三角形,∴∠A=∠ABC=∠C=60°.∵DE∥BC,∴∠AED=∠ABC=60°,∠ADE=∠C=60°.∴△ADE是等边三角形(2)∵△ABC为等边三角形,∴AB=BC=AC.∵BD平分∠ABC,∴AD=AC∵△ADE是等边三角形,∴AE=AD.∴AE=AB.【点睛】本题考查了等边三角形的判定和性质,关键是根据等边三角形的性质和平行线的性质解答.20、(1)①50;②28;(2)①10.66;②12;③11;(3)我校八年级模拟体测中得12分的学生约有256人;【分析】(1)求直方图中各组人数和即可求得跳绳得学生人数,利用百分比的意义求得m即可;(2)利用平均数、众数、中位数的定义求解即可;(3)利用总人数乘以对应的百分比即可求得;【详解】(1)本次抽取到的学生人数为:4+5+11+14+16=50(人);m%=1450x100%=28%,∴=28;故答案为:①50;②28;(2)观察条形统计图得,本次调查获取的样本数据的平均数,∴本次调查获取的样本数据的平均数为10.66,∵在这组样本数据中,12出现了16次,∴众数为12,∵将这组数据按从小到大排列后,其中处于中间位置的两个数都为11,∴中位数为:,(3)800×32%=256人;答:我校八年级模拟体测中得12分的学生约有256人;【点睛】本题主要考查了中位数、众数、平均数的定义,条形统计图,用样本估计总体,扇形统计图,掌握中位数、众数、平均数的定义,条形统计图,用样本估计总体,扇形统计图是解题的关键.21、证明见解析.【解析】试题分析:根据等腰三角形的性质可证∠DBM=∠ECM,可证△BDM≌△CEM,可得MD=ME,即可解题.试题解析:证明:△ABC中,∵AB=AC,∴∠DBM=∠ECM.∵M是BC的中点,∴BM=CM.在△BDM和△CEM中,∵,∴△BDM≌△CEM(SAS).∴MD=ME.考点:1.等腰三角形的性质;2.全等三角形的判定与性质.22、(1)2,4;(2)见解析,(4,0);(3)P(4,2)或(2,﹣2).【分析】(1)将已知等式变形,利用乘方的非负性即可求出a值;(2)根据题意画出图形,由(1)得出OB的长,结合∠APB=45°,得出OP=OB,可得点B的坐标;(3)分当∠ABP=90°时和当∠BAP=90°时两种情况进行讨论,结合全等三角形的判定和性质即可求出点P坐标.【详解】解:(1)∵a2+b2–4a–8b+20=0,∴(a2–4a+4)+(b2–8b+16)=0,∴(a–2)2+(b–4)2=0∴a=2,b=4,故答案为:2,4;(2)如图1,由(1)知,b=4,∴B(0,4),∴OB=4,点P在直线AB的右侧,且在x轴上,∵∠APB=45°,∴OP=OB=4,∴P(4,0),故答案为:(4,0);(3)存在.理由如下:由(1)知a=﹣2,b=4,∴A(﹣2,0),B(0,4),∴OA=2,OB=4,∵△ABP是直角三角形,且∠APB=45°,∴只有∠ABP=90°或∠BAP=90°,Ⅰ、如图2,当∠ABP=90°时,∵∠APB=∠BAP=45°,∴AB=PB,过点P作PC⊥OB于C,∴∠BPC+∠CBP=90°,∵∠CBP+∠ABO=90°,∴∠ABO=∠BPC,在△AOB和△BCP中,,∴△AOB≌△BCP(AAS),∴PC=OB=4,BC=OA=2,∴OC=OB﹣BC=2,∴P(4,2),Ⅱ、如图3,当∠BAP=90°时,过点P'作P'D⊥OA于D,同Ⅰ的方法得,△ADP'≌△BOA,∴DP'=OA=2,AD=OB=4,∴OD=AD﹣OA=2,∴P'(2,﹣2);即:满足条件的点P(4,2)或(2,﹣2);【点睛】本题考查了非负数的性质,等腰直角三角形的判定和性质,全等三角形的判定和性质,难度不大,解题的关键是要根据直角三角形的性质进行分类讨论.23、(1)作图见解析,C(﹣1,﹣1);(2)∠ADB=∠CDE.理由见解析.【分析】(1)过点C作CF⊥y轴于点F通过证明△ACF≌△BAO得CF=OA=1,AF=OB=2,求得OF的值,就可以求出C的坐标;(2)过点C作CG⊥AC交y轴于点G,先证明△ACG≌△BAD就可以得出CG=AD=CD,∠DCE=∠GCE=45°,再证明△DCE≌△GCE就可以得出结论.【详解】解:(1)过点C作CF⊥y轴于点F,如图1所示:,∴∠AFC=90°,∴∠CAF+∠ACF=90°.∵△ABC是等腰直角三角形,∠BAC=90°,∴AC=AB,∠CAF+∠BAO=90°,∠AFC=∠BAC,∴∠ACF=∠BAO.在△ACF和△BAO中,∵,∴△ACF≌△BAO(AAS),∴CF=OA=1,AF=OB=2,∴OF=1,∴C(﹣1,﹣1);(2)∠ADB=∠CDE.理由如下:证明:过点C作CG⊥AC交y轴于点G,如图2所示:,∴∠ACG=∠BAC=90°,∴∠AGC+∠GAC=90°.∵∠CAG+∠BAO=90°,∴∠AGC=∠BAO.∵∠ADO+∠DAO=90°,∠DAO+∠BAO=90°,∴∠ADO=∠BAO,∴∠AGC=∠ADO.在△ACG和△BAD中,,∴△ACG≌△BAD(AAS),∴CG=AD=CD.∵∠ACB=∠ABC=45°,∴∠DCE=∠GCE=45°,在△DCE和△GCE中,,∴△DCE≌△GCE(SAS),∴∠CDE=∠CGE,∴∠ADB=∠C

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论