甘肃省永昌六中学2023-2024学年八上数学期末调研试题含解析_第1页
甘肃省永昌六中学2023-2024学年八上数学期末调研试题含解析_第2页
甘肃省永昌六中学2023-2024学年八上数学期末调研试题含解析_第3页
甘肃省永昌六中学2023-2024学年八上数学期末调研试题含解析_第4页
甘肃省永昌六中学2023-2024学年八上数学期末调研试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

甘肃省永昌六中学2023-2024学年八上数学期末调研试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.如图,边长为(m+3)的正方形纸片剪出一个边长为m的正方形之后,剩余部分可剪拼成一个矩形(不重叠无缝隙),若拼成的矩形一边长为3,则另一边长是()A.m+3 B.m+6C.2m+3 D.2m+62.在以下四个图案中,是轴对称图形的是()A. B. C. D.3.如图1,已知△ABC的六个元素,则下面甲、乙、丙三个三角形中能和△ABC完全重合的是()A.丙和乙 B.甲和丙 C.只有甲 D.只有丙4.要说明命题“若>,则>”是假命题,能举的一个反例是()A. B.C. D.5.如图,在中,,,的垂直平分线交于点,则的度数为()A. B. C. D.6.某地区开展“二十四节气”标识系统设计活动,以期通过现代设计的手段,尝试推动我国非物质文化遗产创新传承与发展.下面四幅作品分别代表“立春”、“芒种”、“白露”、“大雪”,其中是轴对称图形的是()A. B.C. D.7.两个全等的等腰直角三角形拼成一个四边形,则可拼成的四边形是()A.平行四边形B.正方形或平行四边形C.正方形或平行四边形或梯形D.正方形8.若分式方程无解,则m的值为()A.﹣1 B.0 C.1 D.39.已知图中的两个三角形全等,则的度数是()A.72° B.60° C.58° D.50°10.已知是方程2x-ay=5的一个解,则的值为()A. B.4 C.25 D.1二、填空题(每小题3分,共24分)11.定义:等腰三角形的顶角与其一个底角的度数的比值k称为这个等腰三角形的“特征值”.若等腰中,,则它的特征值__________.12.若代数式是一个完全平方式,则常数的值为__________.13.如图,在Rt△ABC中,∠ACB=90°,∠ABC=60°,AB=4,点D是BC上一动点,以BD为边在BC的右侧作等边△BDE,F是DE的中点,连结AF,CF,则AF+CF的最小值是_____.14.已知平行四边形中,,,,则这个平行四边形的面积为_____.15.计算:=__________;=___________16.如图,直线y=x+b与直线y=kx+6交于点P(3,5),则关于x的不等式x+b>kx+6的解集是_____.17.已知一个三角形的两边长分别为2和5,第三边的取值范围为______.18.的平方根是____.三、解答题(共66分)19.(10分)阅读下列题目的解题过程:已知a、b、c为ΔABC的三边,且满足a2c2解:∵a2∴c2(∴c2∴ΔABC是直角三角形问:(1)上述解题过程,从哪一步开始出现错误?请写出该步的代号:;(2)该步正确的写法应是:;(3)本题正确的结论为:.20.(6分)小明和爸爸从家步行去公园,爸爸先出发一直匀速前行,小明后出发.家到公园的距离为2500m,如图是小明和爸爸所走的路程s(m)与步行时间t(min)的函数图象.(1)直接写出小明所走路程s与时间t的函数关系式;(2)小明出发多少时间与爸爸第三次相遇?(3)在速度都不变的情况下,小明希望比爸爸早20min到达公园,则小明在步行过程中停留的时间需作怎样的调整?21.(6分)如图,在四边形ABCD中,对角线AC,BD相交于点O,AO=CO,BO=DO,且∠ABC+∠ADC=180°.(1)求证:四边形ABCD是矩形;(2)若∠ADF:∠FDC=3:2,DF⊥AC,求∠BDF的度数.22.(8分)已知:如图,点A,D,C在同一直线上,AB∥EC,AC=CE,∠B=∠EDC,求证:BC=DE23.(8分)如图,于,于,若,.求证:平分.24.(8分)如图,在中,,点为边上的动点,点从点出发,沿边向点运动,当运动到点时停止,若设点运动的时间为秒,点运动的速度为每秒2个单位长度.(1)当时,=,=;(2)求当为何值时,是直角三角形,说明理由;(3)求当为何值时,,并说明理由.25.(10分)如图,直线被直线所截,与的角平分线相交于点,且,求证:26.(10分)证明:如果两个三角形有两个角及它们的夹边的高分别相等,那么这两个三角形全等.

参考答案一、选择题(每小题3分,共30分)1、C【分析】由于边长为(m+3)的正方形纸片剪出一个边长为m的正方形之后,剩余部分又剪拼成一个矩形(不重叠无缝隙),那么根据正方形的面积公式,可以求出剩余部分的面积,而矩形一边长为3,利用矩形的面积公式即可求出另一边长.【详解】设拼成的矩形一边长为x,则依题意得:(m+3)2-m2=3x,解得,x=(6m+9)÷3=2m+3,故选C.2、A【分析】根据轴对称图形的概念对各选项分析判断利用排除法求解.【详解】A、是轴对称图形,故本选项正确;

B、不是轴对称图形,故本选项错误;

C、不是轴对称图形,故本选项错误;

D、不是轴对称图形,故本选项错误.

故选:A.【点睛】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.3、B【解析】根据全等三角形的判定ASA,SAS,AAS,SSS,看图形中含有的条件是否与定理相符合即可.解:甲、边a、c夹角是50°,符合SAS∴甲正确;乙、边a、c夹角不是50°,∴乙错误;丙、两角是50°、72°,72°角对的边是a,符合AAS,∴丙正确.故选B.点评:本题主要考查对全等三角形的判定的理解和掌握,能熟练地根据全等三角形的判定定理进行判断是解此题的关键4、D【分析】作为反例,要满足条件但不能得到结论,然后根据这个要求对各选项进行判断即可.【详解】解:A、a=3,b=2,满足a>b,且满足|a|>|b|,不能作为反例,故错误;

B、a=4,b=-1,满足a>b,且满足|a|>|b|,不能作为反例,故错误;

C、a=1,b=0;满足a>b,且满足|a|>|b|,不能作为反例,故错误;

D、a=-1,b=-2,满足a>b,但不满足|a|>|b|,∴a=-1,b=-2能作为证明原命题是假命题的反例,

故选D.【点睛】本题考查了命题与定理;熟记:要判断一个命题是假命题,举出一个反例就可以.5、A【分析】根据三角形的内角和定理,求出∠C,再根据线段垂直平分线的性质,推得∠A=∠ABD=30°,由外角的性质求出∠BDC的度数,从而得出∠CBD=45°.【详解】解:∵AB=AC,∠A=30°,

∴∠ABC=∠ACB=75°,

∵AB的垂直平分线交AC于D,

∴AD=BD,

∴∠A=∠ABD=30°,

∴∠BDC=60°,

∴∠CBD=180°-75°-60°=45°.

故选:A.【点睛】此题主要考查线段的垂直平分线的性质和等腰三角形的性质;利用三角形外角的性质求得求得∠BDC=60°是解答本题的关键.本题的解法很多,用底角75°-30°更简单些.6、D【分析】根据轴对称图形的概念求解即可.【详解】A、不是轴对称图形,本选项错误;B、不是轴对称图形,本选项错误;C、不是轴对称图形,本选项错误;D、是轴对称图形,本选项正确.故选D.【点睛】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.7、B【分析】两条直角边相等的直角三角形叫做等腰直角三角形,根据题意拼出符合题意的四边形,进而得出结论.【详解】如图所示,可拼成的四边形是正方形或平行四边形.故选:B.【点睛】此题主要考查了正方形的判定、图形的剪拼以及等腰直角三角形的性质,得出符合题意四边形是解题关键.8、A【分析】

【详解】两边同乘以(x+3)得:x+2=m,x=m-2,∵方程无解∴x+3=0,即m-2+3=0,∴m=-1,故选A.9、D【分析】根据全等三角形的性质中对应角相等,可得此组对应角为线段a和c的夹角,由此可知=50°即可.【详解】∵两个三角形全等,∴∠α=50°.故选D.【点睛】此题考查全等三角形的性质,学生不仅需要掌握全等三角形的性质,而且要准确识别图形,确定出对应角是解题的关键.10、D【分析】把x与y的值代入方程计算求出a的值,代入原式计算即可求出值.【详解】把代入方程得:4﹣a=5,解得:a=﹣1,则=1,故选:D.【点睛】此题考查了二元一次方程的解,方程的即为能使方程左右两边相等的未知数的值.二、填空题(每小题3分,共24分)11、或【分析】分∠A为顶角和底角两类进行讨论,计算出其他角的度数,根据特征值k的定义计算即可.【详解】当∠A为顶角时,等腰三角形的两底角为,∴特征值k=;当∠A为底角时,等腰三角形的顶角为,∴特征值k=.故答案为:或【点睛】本题考查了等腰三角形的分类,等腰三角形的分类讨论是解题中易错点.一般可以考虑从角或边两类进行讨论.12、±12【分析】利用完全平方公式的结构特征判断即可确定出k的值.【详解】∵是一个完全平方式,∴−k=±12,解得:k=±12故填:±12.【点睛】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.13、2.【分析】以BC为边作等边三角形BCG,连接FG,AG,作GH⊥AC交AC的延长线于H,根据等边三角形的性质得到DC=EG,根据全等三角形的性质得到FC=FG,于是得到在点D的运动过程中,AF+FC=AF+FG,而AF+FG≥AG,当F点移动到AG上时,即A,F,G三点共线时,AF+FC的最小值=AG,根据勾股定理即可得到结论.【详解】以BC为边作等边三角形BCG,连接FG,AG,

作GH⊥AC交AC的延长线于H,

∵△BDE和△BCG是等边三角形,

∴DC=EG,

∴∠FDC=∠FEG=120°,

∵DF=EF,

∴△DFC≌△EFG(SAS),

∴FC=FG,

∴在点D的运动过程中,AF+FC=AF+FG,而AF+FG≥AG,

∴当F点移动到AG上时,即A,F,G三点共线时,AF+FC的最小值=AG,

∵BC=CG=AB=2,AC=2,

在Rt△CGH中,∠GCH=30°,CG=2,

∴GH=1,CH=,

∴AG===2,

∴AF+CF的最小值是2.【点睛】此题考查轴对称-最短路线问题,等边三角形的性质,直角三角形的性质,正确的作出辅助线是解题的关键.14、40【分析】作高线CE,利用30角所对直角边等于斜边的一半求得高CE,再运用平行四边形的面积公式计算即可.【详解】过C作CE⊥AB于E,在Rt△CBE中,∠B=30,,

∴,.故答案为:.【点睛】本题考查了平行四边形的性质,解题的关键是熟悉平行四边形的面积公式,熟练运用“30角所对直角边等于斜边的一半”求解.15、1,【分析】直接运用零次幂和负整数次幂的性质解答即可.【详解】解:=1,故答案为1,.【点睛】本题考查了零次幂和负整数次幂的性质,掌握相关性质成为解答本题的关键.16、x>1.【详解】∵直线y=x+b与直线y=kx+6交于点P(1,5),∴由图象可得,当x>1时,x+b>kx+6,即不等式x+b>kx+6的解集为x>1.【点睛】本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.17、.【分析】根据三角形三边关系两边之和大于第三边,两边之差小于第三边求解即可.【详解】∵一个三角形的两边长分别为2和5,∴第三边x的范围为:,即:.所以答案为.【点睛】本题主要考查了三角形三边关系,熟练掌握相关概念是解题关键.18、±3【详解】∵=9,∴9的平方根是.故答案为3.三、解答题(共66分)19、故答案为:(1)③;(2)当a2−b2=0时,a=b;当a2−b2≠0时,a2+b2=c2;(3)△ABC是直角三角形或等腰三角形或等腰直角三角形.【解析】(1)上述解题过程,从第三步出现错误,错误原因为在等式两边除以a2−b2,没有考虑(2)正确的做法为:将等式右边的移项到方程左边,然后提取公因式将方程左边分解因式,根据两数相乘积为0,两因式中至少有一个数为0转化为两个等式;(3)根据等腰三角形的判定,以及勾股定理的逆定理得出三角形为直角三角形或等腰三角形.【详解】(1)上述解题过程,从第③步开始出现错误;(2)正确的写法为:c2(a2−b2)=(a2+b2)(a2−b2),移项得:c2(a2−b2)−(a2+b2)(a2−b2)=0,因式分解得:(a2−b2)[c2−(a2+b2)]=0,则当a2−b2=0时,a=b;当a2−b2≠0时,a2+b2=c2;(3)△ABC是直角三角形或等腰三角形或等腰直角三角形。故答案为:(1)③;(2)当a2−b2=0时,a=b;当a2−b2≠0时,a2+b2=c2;(3)△ABC是直角三角形或等腰三角形或等腰直角三角形【点睛】此题考查勾股定理的逆定理,因式分解的应用,解题关键在于掌握运算法则.20、(1)s=;(2)37.5;(3)小明在步行过程中停留的时间需减少5min【解析】试题分析:(1)根据函数图形得到0≤t≤20、20<t≤30、30<t≤60时,小明所走路程s与时间t的函数关系式;(2)利用待定系数法求出小明的爸爸所走的路程s与步行时间t的函数关系式,列出二元一次方程组解答即可;(3)分别计算出小明的爸爸到达公园需要的时间、小明到达公园需要的时间,计算即可.试题解析:解:(1)s=;(2)设小明的爸爸所走的路程s与步行时间t的函数关系式为:s=kt+b,则,解得,,则小明和爸爸所走的路程与步行时间的关系式为:s=30t+250,当50t﹣500=30t+250,即t=37.5min时,小明与爸爸第三次相遇;(3)30t+250=2500,解得,t=75,则小明的爸爸到达公园需要75min,∵小明到达公园需要的时间是60min,∴小明希望比爸爸早20min到达公园,则小明在步行过程中停留的时间需减少5min.21、(1)见解析;(2)∠BDF=18°.【分析】(1)先证明四边形ABCD是平行四边形,求出∠ABC=90°,然后根据矩形的判定定理,即可得到结论;(2)求出∠FDC的度数,根据三角形的内角和,求出∠DCO,然后得到OD=OC,得到∠CDO,即可求出∠BDF的度数.【详解】(1)证明:∵AO=CO,BO=DO,∴四边形ABCD是平行四边形,∴∠ABC=∠ADC,∵∠ABC+∠ADC=180°,∴∠ABC=∠ADC=90°,∴四边形ABCD是矩形;(2)解:∵∠ADC=90°,∠ADF:∠FDC=3:2,∴∠FDC=36°,∵DF⊥AC,∴∠DCO=90°﹣36°=54°,∵四边形ABCD是矩形,∴CO=OD,∴∠ODC=∠DCO=54°,∴∠BDF=∠ODC﹣∠FDC=18°.【点睛】本题考查了平行四边形的判定和性质,矩形的判定和性质,能灵活运用定理进行推理是解题的关键.注意:矩形的对角线相等,有一个角是直角的平行四边形是矩形.22、证明见解析【分析】根据由两个角和其中一角的对边相等的两个三角形全等证明△ABC≌△CDE,由全等三角形的性质即可得到BC=DE.【详解】证明:∵AB∥EC,∴∠A=∠ECA,在△ABC和△CDE中∴△ABC≌CDE(AAS),∴BC=DE.【点睛】本题主要考查全等三角形的判定和性质,掌握全等三角形的判定方法(即SSS、SAS、ASA、AAS和HL)和全等三角形的性质(即对应角相等、对应边相等).23、见解析【分析】证明Rt△BDE≌Rt△CDF,得到DE=DF,即可得出平分.【详解】∵DE⊥AB,DF⊥AC,∴∠E=∠DFC=90°在Rt△BDE和Rt△CDF中,,∴Rt△BDE≌Rt△CDF(HL),∴DE=DF,∴AD平分∠BAC.【点睛】此题考查角平分线的判定定理:在角的内部,到角的两边的距离相等的点在角的平分线上.24、(1)CD=4,AD=16;(2)当t=3.6或10秒时,是直角三角形,理由见解析;(3)当t=7.2秒时,,理由见解析【分析】(1)根据CD=速度×时间列式计算即可得解,利用勾股定理列式求出AC,再根据AD=AC-CD代入数据进行计算即可得解;

(2)分①∠CDB=90°时,利用△ABC的面积列式计算即可求出BD,然后利用勾股定理列式求解得到CD,再根据时间=路程÷速度计算;②∠CBD=90°时,点D和点A重合,然后根据时间=路程÷速度计算即可得解;

(3)过点B作BF⊥AC于F,根据等腰三角形三线合一的性质可得CD=2CF,再由(2)的结论解答.【详解】解:(1)t=2时,CD=2×2=4,

∵∠ABC=90°,AB=16,BC=12,∴AD=AC-CD=20-4=16;(2)①∠CDB=90°时,∴解得BD=9.6,∴t=7.2÷2=3.6秒;

②∠CBD=90°时,点D和点A重合,

t=20÷2=10秒,

综上所述,当t=3.6或10秒时,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论