矩阵理论论文_第1页
矩阵理论论文_第2页
矩阵理论论文_第3页
矩阵理论论文_第4页
矩阵理论论文_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

-1-矩阵分解在信号和图像处理方面的应用矩阵理论是一门发展完善、理论严谨、方法独特的理论基础课程,它对培养学生的逻辑能力、推理能力具有重要作用,但它又能广泛应用于各个领域。矩阵理论主要内容包括线性空间、线性变换、范数理论;矩阵分析;矩阵分解;广义逆矩阵;特征值的估计以及广义特征值等。用矩阵的理论和方法来处理现代工程技术中的各种问题已经越来越普遍。下面简单介绍一下矩阵的奇异值分解在信号和图像处理方面的简单应用。此方法近年来在数据降维和压缩,滤波器设网络节点估计、小波变换结果的后续处理等很多领域都获得了重要的应用。在滤波器设计方面,VOZALIS等将SVD用于协同滤波,他们的研究结果表明,SVD提高了协同滤波过程中预测的质量和精度。而在消噪方面,LEHTOLA等利用SVD和数学形态学相结合,对心电信号(Electrocardiogram,ECG)进行处理,消除了噪声的影响,提高了心电图诊断的准确性。同时奇异值分解已用于从孕妇皮肤测量信号中提取胎儿心电信号。在另一些研究中SVD则被利用来实现特征提取和弱信号分离,如LIU等利用SVD从背景噪声强烈的振动信号中提取周期性冲击信息。SVD在神经网络中也获得了应用,如TEOH等利用SVD实现了对隐层空间中模式的线性独立性分析,进而决定了隐层神经元节点的数目。SVD的正交化特性在对小波和小波包变换结果的后续处理中也得到了有效的应用,如XIE等利用SVD对小波包分解后的肌电信号进行正交化处理,以获得代表肢体运动模式的最优特征,进而对肌电信号进行分类,用于对假肢的控制。小波多分辨分析的本质就是把信号在一系列不同层次的空间上进行分解,获得相应的近似和细节信号,从而以不同的层次显示信号的各种概貌和细节特征[9],这种多分辨思想使得小波分析在很多领域获得了极为广泛的应用。基于这种多分辨分析思想的思考,赵学智在SVD中提出了一种矩阵二分递推构造方法,根据该方法得到的SVD分解结果将分属于不同层次的空间,而且下一层次空间的基矢量是利用上一层次的近似基矢量而获得的,实现了利用SVD以不同的层次来展现信号的概貌和细部特征。这种多分辨SVD的分解结果具有二阶消失矩特性,可以实现对信号中Lip指数a=0和a=l的奇异点位置的精确定位,这种定位不随分解层数的改变而发生任何偏移,远优于小波变换的奇异性检测效果,多分辨SVD具有优良的消噪效果,其本质是基于正常信号和噪声的相关性不同,从而造成了它们的奇异值分布不同,结果使得噪声被分离到SVD细节中,而正常信号则保留在SVD近似信号中,消噪结果无相位偏差,是一种零相移消噪方法。最后,这种多分辨SVD可以提取到微弱的故障特征信息。设,,是的特征值,是的特征值,它们都是实数。且设则特征值与之间的关系为:,。设,的正特征值,的正特征值,称,是的正奇异值,简称奇异值。若是正规矩阵,则的奇异值是的非零特征向量的模长。若,是的个正奇异值,则存在阶酉矩阵和阶酉矩阵,满足:其中,,为奇异对角阵。满足是对角阵,满足是对角阵。的第列为的对应于奇异值对应的左奇异向量,的第列为的对应于奇异值对应的右奇异向量。它们的每一列均为单位向量,且各列之间相互正交。若,是的个正奇异值,则总有次酉矩阵,满足:,其中。奇异值分解是一种基于特征向量的矩阵变换方法。奇异值分解是现代数值的最基本和最重要的工具之一。任意一个矩阵的奇异值是唯一的,它刻画了矩阵数据的分布特征。直观上,可以这样理解矩阵的奇异值分解:将矩阵看成是一个线性变换,它将维空间的点映射到维空间。经过奇异值分解后,这种变换被分割成3个部分,分别为、和,其中和都是标准正交矩阵,它们对应的线性变换就相当于对维和维坐标系中坐标轴的旋转变换。若为数字图像,则可视为二维时频信息,可将的奇异值分解公式写为:其中,和分别是和的列矢量,是的非零奇异值。故上式表示的数字图像可以看成是个秩为1的子图叠加的结果,而奇异值为权系数。所以也表示时频信息,对应的和可分别视为频率矢量和时间矢量,因此数字图像中的时频信息就被分解到一系列由和构成的视频平面中。由矩阵范数理论,奇异值能与向量2-范数和矩阵Frobenious-范数(F-范数)相联系。若以F-范数的平方表示图像的能量,则由矩阵奇异值分解的定义知:。也就是说,数字图像经奇异值分解后,其纹理和几何信息都集中在、之中,而中的奇异值则代表图像的能量信息。性质1:矩阵的奇异值代表图像的能量信息,因而具有稳定性。设,,是矩阵的一个扰动矩阵。和的非零奇异值分别记为:和。且,是的最大奇异值。则有:。由此可知,当图像被施加小的扰动时,图像矩阵的奇异值变化不会超过扰动矩阵的最大奇异值,所以图像奇异值的稳定性很好。性质2:矩阵的奇异值具有比例不变性。设,矩阵的奇异值为,,矩阵()的奇异值为。则有:。性质3:矩阵的奇异值具有旋转不变性。设,矩阵的奇异值为,。若是酉矩阵,则矩阵的奇异值与矩阵的奇异值相同:。性质4:设,。若,,所以可得:上式表明,在F-范数意义下,是在空间(秩为的维矩阵构成的线性空间)中的一个将秩最佳逼近。因此可根据需要保留个大于某个阈值的而舍弃其余个小于阈值的且保证两幅图像在某种意义下的近似。这就为奇异值特征矢量的降维和数据压缩等应用找到了依据。奇异值分解压缩原理分析:用奇异值分解来压缩图像的基本思想是对图像矩阵进行奇异值分解,选取部分的奇异值和对应的左、右奇异向量来重构图像矩阵。根据奇异值分解的图像性质1和4可以知道,奇异值分解可以代表图像的能量信息,并且可以降低图像的维数。如果表示个维向量,可以通过奇异值分解将表示为个维向量。若的秩远远小于和,则通过奇异值分解可以大大降低的维数。对于一个像素的图像矩阵,设,其中,。按奇异值从大到小取个奇异值和这些奇异值对应的左奇异向量及右奇异向量重构原图像矩阵。如果选择的,这是无损的压缩;基于奇异值分解的图像压缩讨论的是,即有损压缩的情况。这时,可以只用个数值代替原来的个图像数据。这个数据分别是矩阵的前个奇异值,左奇异向量矩阵的前列和右奇异向量矩阵的前列元素。比率:称为图像的压缩比。显然,被选择的奇异值的个数应该满足条件,即。故在传送图像的过程中,不需要传个数据,而只需要传个有关奇异值和奇异向量的数据即可。接收端,在接收到奇异值以及左奇异向量和右奇异向量后,可以通过:重构出原图像矩阵。与的误差为:某个奇异值对图像的贡献可以定义为,对一幅图像来说,较大的奇异值对图像信息的贡献量较大,较小的奇异值对图像的贡献较小。假如接近1,该图像的主要信息就包含在之中。通常图像的奇异值都具“大L曲线”,只有不多的一些比较大的奇异值,其它的奇异值相对较小,因此一般只需要比较小的k就使接近1。在满足视觉要求的基础上,按奇异值的大小选择合适的奇异值个数,就可以通过将图像恢复。越小,用于表示的数据量就小,压缩比就越大,而越接近,则与就越相似。在一些应用场合中,如果是规定了压缩比,则可以由式求出,这时也同样可以求出。奇异值分解压缩应用过程:在对图像进行操作时,因为矩阵的维数一般较大,直接进行奇异值分解运算量大,可以将图像分解为子块,对各子块进行奇异值分解并确定奇异值个数,将每个子块进行重构。这样操作除了因为对较小型的矩阵进行奇异值分解的计算量比较小外,另一方面是为了利用原始图像的非均匀的复杂性。如果图像的某一部分比较简单,那么只需要少量的奇异值,就可以达到满意的近似效果。为了保证图像的质量就需要较多的奇异值。但是各个子块的奇异值数目,大小各不相同,因此可以考虑为每个子块自适应的选择适当的奇异值数目。一种简单的方法是定义奇异值贡献量的和来选择,其中是一个接近1的数。对常见的256×256.bmp格式的图像(位图),划分为4×4个子块,每个子块大小为64×64。对每个子块根据来选择所需要的奇异值数目。增大的值来选择奇异值数目,可以推理得随着不断增大,视觉效果越来越好。随着不断增大,需要的奇异值也增多,压缩比会减小。经过以上讨论可知,用奇异值分解进行图像压缩,肯定能取得成功,也具有较好的应用价值,但仍然需要有以下值得去思考并改善:1、对子块的划分可以采取更加有效的方法来完成。例如对规模很大的矩阵,随机抽取矩阵的某些行列得到规模较小的矩阵,计算小矩阵的奇异值,重复若干次,用这些小矩阵的奇异值逼近原始矩阵的奇异。2、影响运算速度的因素是SVD变换运算比较大,能否找到一个快速的SVD变换算法。另外,若已知图像矩阵的奇异值及其特征空间,一般认为较大的奇异值及其对应的奇异向量表示图像信号,而噪声反映在较小的奇异值及其对应的奇异向量上。依据一定的准则选择门限,低于该门限的奇异值置零(截断),然后通过这些奇异值和其对应的奇异向量重构图像进行去噪。若考虑图像的局部平稳性,也可以对图像分块奇异值分解去噪,这样能在一定程度上保护图像的边缘细节。如果仔细分析,SVD去噪具有的方向性。根据SVD图像性

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论