第1章 全等三角形(易错必刷30题5种题型专项训练)(解析版)_第1页
第1章 全等三角形(易错必刷30题5种题型专项训练)(解析版)_第2页
第1章 全等三角形(易错必刷30题5种题型专项训练)(解析版)_第3页
第1章 全等三角形(易错必刷30题5种题型专项训练)(解析版)_第4页
第1章 全等三角形(易错必刷30题5种题型专项训练)(解析版)_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第1章全等三角形(易错必刷30题5种题型专项训练)一.全等图形(共2小题)1.(2021秋•盐都区校级月考)在如图所示的网格图中,每个小正方形的边长都为1.沿着图中的虚线,可以将该图形分割成2个全等的图形.在所有的分割方案中,最长分割线的长度等于7.【分析】沿着图中的虚线,可以将该图形分割成2个全等的图形.画出所有的分割方案,即可得到最长分割线的长度.【解答】解:分割方案如图所示:由图可得,最长分割线的长度等于7.故答案为:7.【点评】本题主要考查了全等图形,解决问题的关键是画出所有的分割方案.2.(2020秋•江都区校级月考)如图为6个边长相等的正方形的组合图形,则∠1﹣∠2+∠3=45°.【分析】观察图形可知∠1与∠3互余,∠2是直角的一半,利用这些关系可解此题.【解答】解:观察图形可知:△ABC≌△BDE,∴∠1=∠DBE,又∵∠DBE+∠3=90°,∴∠1+∠3=90°.∵∠2=45°,∴∠1﹣∠2+∠3=90°﹣45°=45°.故答案为:45°.【点评】此题综合考查角平分线以及全等图形,要注意∠1与∠3互余,∠2是直角的一半,特别是观察图形的能力.二.全等三角形的性质(共4小题)3.(2020秋•滨海县月考)如图,两个三角形△ABC与△BDE全等,观察图形,判断在这两个三角形中边DE的对应边为()A.BE B.AB C.CA D.BC【分析】全等三角形的对应边相等,根据全等三角形的性质即可得出结论.【解答】解:∵△ABC与△BDE全等,通过测量可得:BD<DE<BE,BC<AB<AC,∴在这两个三角形中边DE的对应边为AB,故选:B.【点评】本题主要考查了全等三角形的性质,解决问题的关键是掌握:全等三角形的对应边相等.4.(2022秋•江阴市校级月考)一个三角形的三边为2、5、x,另一个三角形的三边为y、2、6,若这两个三角形全等,则x+y=11.【分析】根据已知条件分清对应边,结合全的三角形的性质可得出答案.【解答】解:∵这两个三角形全等,两个三角形中都有2∴长度为2的是对应边,x应是另一个三角形中的边6.同理可得y=5∴x+y=11.故答案为:11.【点评】本题考查了全等三角形的性质及对应边的找法;根据两个三角形中都有2找对对应边是解决本题的关键.5.(2020秋•崇川区校级月考)如图,已知长方形ABCD的边长AB=20cm,BC=16cm,点E在边AB上,AE=6cm,如果点P从点B出发在线段BC上以2cm/s的速度向点C向运动,同时,点Q在线段CD上从点C到点D运动.则当△BPE与△CQP全等时,时间t为1或4s.【分析】由条件分两种情况,当△BPE≌△CQP时,则有BE=PC,由条件可得到关于t的方程,当△BPE≌△CPQ,则有BP=PC,同样可得出t的方程,可求出t的值.【解答】解:∵AB=20cm,AE=6cm,BC=16cm,∴BE=14cm,BP=2tcm,PC=(16﹣2t)cm,当△BPE≌△CQP时,则有BE=PC,即14=16﹣2t,解得t=1,当△BPE≌△CPQ时,则有BP=PC,即2t=16﹣2t,解得t=4,故答案为:1或4.【点评】本题主要考查全等三角形的性质,由条件分两种情况得到关于t的方程是解题的关键.6.(2022秋•建湖县校级月考)一个三角形的三边为3、5、x,另一个三角形的三边为y、3、6,若这两个三角形全等,则x+y=11.【分析】直接利用全等三角形的性质得出x,y的值进而得出答案.【解答】解:∵一个三角形的三边为3、5、x,另一个三角形的三边为y、3、6,这两个三角形全等,∴x=6,y=5,则x+y=11.故答案为:11.【点评】此题主要考查了全等三角形的性质,正确得出x,y的值是解题关键.三.全等三角形的判定(共13小题)7.(2020秋•滨海县月考)已知△ABC的三个内角三条边长如图所示,则甲、乙、丙三个三角形中,和△ABC全等的图形是()A.甲和乙 B.乙和丙 C.只有乙 D.只有丙【分析】根据三角形全等的判定定理:SAS,ASA,AAS,SSS,看看是否符合以上条件,进行判断即可.【解答】解:甲,不符合两边对应相等,且夹角相等,∴甲和已知三角形不全等;乙,符合两边对应相等,且夹角相等,乙和已知三角形全等;丙,符合AAS,即三角形和已知图的三角形全等;故选:B.【点评】本题考查了三角形全等的判定定理的应用,主要看看是否符合ASA,SAS,AAS,SSS,注意:对应相等,如:甲a=a,c=c,但夹角不相等,题型较好,但是一道比较容易出错的题目.8.(2022秋•仪征市校级月考)如图,已知△ABC的三条边和三个角,则甲、乙、丙三个三角形中和△ABC全等的是()A.甲和乙 B.甲和丙 C.乙和丙 D.只有甲【分析】根据全等三角形的判定一一判断即可.【解答】解:∵∠A=180°﹣42°﹣51°=87°,根据AAS可以判定甲与△ABC全等,根据ASA可以判定乙与△ABC全等.故选:A.【点评】本题考查全等三角形的判定,解题的关键是熟练掌握基本知识,属于中考常考题型.9.(2022秋•靖江市月考)如图,在△ABC和△DEF中,AB=DE,∠A=∠D,添加一个条件不能判定这两个三角形全等的是()A.AC=DF B.∠B=∠E C.BC=EF D.∠C=∠F【分析】根据全等三角形的判定定理,结合各选项的条件进行判断即可.【解答】解:A、添加AC=DF,满足SAS,可以判定两三角形全等;B、添加∠B=∠E,满足ASA,可以判定两三角形全等;C、添加BC=EF,不能判定这两个三角形全等;D、添加∠C=∠F,满足AAS,可以判定两三角形全等;故选:C.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.10.(2020秋•宜兴市月考)如图,已知CD=CA,∠D=∠A,添加下列条件中的()仍不能证明△ABC≌△DEC.A.DE=AB B.CE=CB C.∠DEC=∠B D.∠ECD=∠BCA【分析】添加的条件取决于题目中的已知条件,若已知两边对应相等,则找它们的夹角或第三边;若已知两角对应相等,则必须再找一组对边对应相等,且要是两角的夹边,若已知一边一角,则找另一组角,或找这个角的另一组对应邻边.【解答】解:A.当DE=AB,CD=CA,∠D=∠A时,可得△ABC≌△DEC(SAS).B.当CE=CB,CD=CA,∠D=∠A时,不能得到△ABC≌△DEC.C.当∠DEC=∠B,CD=CA,∠D=∠A时,可得△ABC≌△DEC(AAS).D.当∠ECD=∠BCA,CD=CA,∠D=∠A时,可得△ABC≌△DEC(ASA).故选:B.【点评】本题主要考查了全等三角形的判定,解题时注意:两边及其夹角分别对应相等的两个三角形全等;两角及其夹边分别对应相等的两个三角形全等;两角及其中一个角的对边对应相等的两个三角形全等.11.(2022秋•宝应县校级月考)如图,点A,D,C,F在一条直线上,AB=DE,∠A=∠EDF,下列条件不能判定△ABC≌△DEF的是()A.AD=CF B.∠BCA=∠F C.∠B=∠E D.BC=EF【分析】根据各个选项中的条件和全等三角形的判定可以解答本题.【解答】解:已知点A、D、C、F在同一直线上,AB=DE,∠A=∠EDF,添加的一个条件是AD=CF,可以得到AC=DF,根据SAS可以证明△ABC≌△DEF,故选项A不符合题意;已知点A、D、C、F在同一直线上,AB=DE,∠A=∠EDF,添加的一个条件是∠BCA=∠EFD,根据AAS可以证明△ABC≌△DEF,故选项B不符合题意;已知点A、D、C、F在同一直线上,AB=DE,∠A=∠EDF,添加的一个条件是∠B=∠E,根据ASA可以证明△ABC≌△DEF,故选项C不符合题意;已知点A、D、C、F在同一直线上,AB=DE,∠A=∠EDF,添加的一个条件是BC=EF,根据SSA不可以证明△ABC≌△DEF,故选项D符合题意;故选:D.【点评】本题考查全等三角形的判定,解答本题的关键是明确题意,找出所求问题需要的条件,利用全等三角形的判定解答.12.(2022秋•大丰区校级月考)如图,点B在AE上,∠C=∠D,要能证△ABC≌△ABD,只需再补充一个条件:∠CAB=∠DAB.【分析】根据全等三角形的判定定理加条件.【解答】解:在△ABC和△ABD中∴△ABC≌△ABD(AAS)故答案为:∠CAB=∠DAB.【点评】本题考查三角形全等的判定方法,掌握判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、是解题关键.13.(2022秋•通州区校级月考)如图,AC,BD相交于点O,OB=OD,要使△AOB≌△COD,添加一个条件是OA=OC(答案不唯一).(只写一个)【分析】根据全等三角形的判定方法,即可解答.【解答】解:∵OB=OD,∠AOB=∠COD,OA=OC,∴△AOB≌△COD(SAS),∴要使△AOB≌△COD,添加一个条件是OA=OC,故答案为:OA=OC(答案不唯一).【点评】本题考查了全等三角形的判定,熟练掌握全等三角形的判定方法是解题的关键.14.(2022秋•秦淮区校级月考)如图,在△ABC中,AD⊥BC于点D,要使△ABD≌△ACD,若直接根据“HL”判定,还需要再添加的一个条件是AB=AC.【分析】根据斜边和一条直角边对应相等的两个直角三角形全等(可以简写成“斜边、直角边”或“HL”)可得需要添加条件AB=AC.【解答】解:还需添加条件AB=AC,∵AD⊥BC于D,∴∠ADB=∠ADC=90°,在Rt△ABD和Rt△ACD中,,∴Rt△ABD≌Rt△ACD(HL).由上可知,根据“HL”判定,还需要再添加的一个条件是AB=AC.故答案为:AB=AC.【点评】此题主要考查了直角三角形全等的判定,解题的关键是正确理解:斜边和一条直角边对应相等的两个直角三角形全等.15.(2022秋•洪泽区校级月考)如图,若∠1=∠2,若根据AAS,加上条件∠A=∠B,则有△AOC≌△BOC.【分析】根据全等三角形的判定方法AAS,即可解答.【解答】解:∵∠A=∠B,∠1=∠2,OC=OC,∴△AOC≌△BOC(AAS),故答案为:∠A=∠B.【点评】本题考查了全等三角形的判定,熟练掌握全等三角形的判定方法AAS是解题的关键.16.(2022秋•江都区月考)如图,∠1=∠2,要利用“AAS”得到△ABD≌△ACD,需要增加的一个条件是∠B=∠C.【分析】根据题意,易得∠ADB=∠ADC,AD为公共边,所以根据全等三角形的判定方法容易寻找添加条件.【解答】解:∵∠1=∠2,∴∠ADB=∠ADC,又∵AD=AD,∴当∠B=∠C时,△ABE≌△ACE(AAS);或BD=CD时,△ABE≌△ACE(SAS);或∠BAE=∠CAE时,△ABE≌△ACE(ASA).故答案为:∠B=∠C(答案不唯一).【点评】此题考查三角形全等的判定方法,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.17.(2021秋•东台市月考)如图,CA⊥BC,垂足为C,AC=2cm,BC=6cm,射线BM⊥BQ,垂足为B,动点P从C点出发以1cm/s的速度沿射线CQ运动,点N为射线BM上一动点,满足PN=AB,随着P点运动而运动,当点P运动0或4或8或12秒时,△BCA与点P、N、B为顶点的三角形全等.【分析】此题要分两种情况:①当P在线段BC上时,②当P在BQ上,再分别分两种情况AC=BP或AC=BN进行计算即可.【解答】解:①当P在线段BC上,AC=BP时,△ACB与△PBN全等,∵AC=2,∴BP=2,∴CP=6﹣2=4,∴点P的运动时间为4÷1=4(秒);②当P在线段BC上,AC=BN时,△ACB与△NBP全等,这时BC=PB=6,CP=0,因此时间为0秒;③当P在BQ上,AC=BP时,△ACB与△PBN全等,∵AC=2,∴BP=2,∴CP=2+6=8,∴点P的运动时间为8÷1=8(秒);④当P在BQ上,AC=NB时,△ACB与△NBP全等,∵BC=6,∴BP=6,∴CP=6+6=12,点P的运动时间为12÷1=12(秒),故答案为:0或4或8或12.【点评】本题考查三角形全等的判定方法,解题时注意斜边与直角边对应相等的两个直角三角形全等.18.(2022秋•宝应县月考)如图,已知四边形ABCD中,AB=10厘米,BC=8厘米,CD=12厘米,∠B=∠C,点E为AB的中点.如果点P在线段BC上以3厘米/秒的速度由B点向C点运动,同时,点Q在线段CD上由C点向D点运动.当点Q的运动速度为3厘米/秒或厘米/秒时,能够使△BPE与△CQP全等.【分析】分两种情况讨论,依据全等三角形的对应边相等,即可得到点Q的运动速度.【解答】解:设点P运动的时间为t秒,则BP=3t,CP=8﹣3t,∵∠B=∠C,∴①当BE=CP=5,BP=CQ时,△BPE与△CQP全等,此时,5=8﹣3t,解得t=1,∴BP=CQ=3,此时,点Q的运动速度为3÷1=3厘米/秒;②当BE=CQ=5,BP=CP时,△BPE与△CQP全等,此时,3t=8﹣3t,解得t=,∴点Q的运动速度为5÷=厘米/秒;故答案为:3厘米/秒或厘米/秒.【点评】本题考查了全等三角形的性质和判定的应用,解决问题的关键是掌握全等三角形的对应边相等.19.(2022秋•洪泽区校级月考)已知,如图,∠1=∠2,∠C=∠D,BC=BD,求证:△ABD≌△EBC.【分析】根据∠1=∠2,可得∠ABD=∠EBC,然后结合∠C=∠D,BC=BD,利用ASA可证明△ABD≌△EBC.【解答】证明:∵∠1=∠2,∴∠1+∠EBD=∠2+∠EBD,∴∠ABD=∠EBC,在△ABD和△EBC中,,∴△ABD≌△EBC(ASA).【点评】本题考查三角形全等的判定方法,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.四.直角三角形全等的判定(共1小题)20.(2022秋•如皋市校级月考)下列说法不正确的是()A.两条直角边对应相等的两个直角三角形全等 B.一锐角和斜边对应相等的两个直角三角形全等 C.斜边和一直角边对应相等的两个直角三角形全等 D.有两边相等的两个直角三角形全等【分析】根据直角三角形全等的判定方法:SAS,AAS,HL,逐一判断即可解答.【解答】解:A、两条直角边对应相等的两个直角三角形全等,可根据SAS来判断,故A不符合题意;B、一锐角和斜边对应相等的两个直角三角形全等,可根据AAS来判断,故B不符合题意;C、斜边和一直角边对应相等的两个直角三角形全等,可根据HL来判断,故C不符合题意;D、如果第一个直角三角形的两条直角边分别为3,4,第二个直角三角形一条直角边为3,斜边为4,那么这两个直角三角形不全等,故D符合题意;故选:D.【点评】本题考查了直角三角形全等的判定,熟练掌握直角三角形全等的判定是解题的关键.五.全等三角形的判定与性质(共10小题)21.(2022秋•如皋市校级月考)如图,AB⊥CD,且AB=CD.E、F是AD上两点,CE⊥AD,BF⊥AD.若BF=a,EF=b,CE=c,则AD的长为()A.a+c B.b+c C.a﹣b+c D.a+b﹣c【分析】由余角的性质可得∠A=∠C,由“AAS”可证△ABF≌△CDE,可得AF=CE=c,DE=BF=a,可得AD的长.【解答】解:∵AB⊥CD,CE⊥AD,BF⊥AD,∴∠AFB=∠CED=90°,∠A+∠D=90°,∠C+∠D=90°,∴∠A=∠C,∵∠A=∠C,∠CED=∠AFB,AB=CD,∴△ABF≌△CDE(AAS),∴AF=CE=c,DE=BF=a,∵EF=b,∴AD=AF+DF=c+(a﹣b)=a﹣b+c.故选:C.【点评】本题考查了全等三角形的判定和性质,熟练运用全等三角形的判定是本题的关键.22.(2022秋•如皋市校级月考)如图,在△ABC中,AB=6,AC=8,AD是边BC上的中线,则AD长的取值范围是()A.6<AD<8 B.6≤AD≤8 C.1<AD<7 D.1≤AD≤7【分析】延长AD到点E,使DE=AD,连接EC,根据三角形的中线定义可得CD=BD,然后利用SAS证明△ADB≌△△EDC,从而可得AB=EC=6,最后在△ACE中,利用三角形的三边关系进行计算即可解答.【解答】解:延长AD到点E,使DE=AD,连接EC,∵AD是边BC上的中线,∴CD=BD,∵∠ADB=∠CDE,∴△ADB≌△△EDC(SAS),∴AB=EC=6,在△ACE中,AC﹣CE<AE<AC+CE,∴2<2AD<14,∴1<AD<7,故选:C.【点评】本题考查了全等三角形的判定与性质,三角形的三边关系,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.23.(2021秋•邗江区校级期中)两组邻边分别相等的四边形叫做“筝形”,如图,四边形ABCD是一个筝形,其中AD=CD,AB=CB,在探究筝形的性质时,得到如下结论:①△ABD≌△CBD;②AC⊥BD;③四边形ABCD的面积=2AC•BD,其中正确的结论有()A.0个 B.1个 C.2个 D.3个【分析】先证明△ABD与△CBD全等,再证明△AOD与△COD全等即可判断.【解答】解:在△ABD与△CBD中,,∴△ABD≌△CBD(SSS),故①正确;∴∠ADB=∠CDB,在△AOD与△COD中,,∴△AOD≌△COD(SAS),∴∠AOD=∠COD=90°,AO=OC,∴AC⊥DB,故②正确;四边形ABCD的面积=S△ABD+S△BDC=AC•BD,故③错误;故选:C.【点评】此题考查全等三角形的判定和性质,关键是根据SSS证明△ABD与△CBD全等和利用SAS证明△AOD与△COD全等.24.(2022秋•广陵区校级月考)在△ABC中,AC=6,AB=4,则BC边上中线AD取值范围是1<AD<5.【分析】延长AD至点E,使得DE=AD,连接CE,可证明△ABD≌△ECD(SAS),可得AB=CE,AD=DE,在△ACE中,根据三角形三边关系即可求得AE的取值范围,即可解题.【解答】解:延长AD至点E,使得DE=AD,连接CE,BE,在△ABD和△CDE中,=,∴△ABD≌△ECD(SAS),∴AB=CE,AD=DE∵△ACE中,AC﹣AB<AE<AC+AB,∴2<AE<10,∴1<AD<5.故答案为:1<AD<5.【点评】本题考查了全等三角形的判定与性质,三角形关系,证明△ABD≌△CDE是解题的关键.25.(2022秋•如皋市校级月考)在△ABC中,若AB=5,AC=7,则中线AD的最大整数值是5.【分析】延长AD到E,使AD=DE,连接BE,证△ADC≌△EDB,推出EB=AC,根据三角形的三边关系求出即可.【解答】解:如图,延长AD到E,使DE=AD,连接BE,∵AD是△ABC的中线,∴BD=CD,在△ADC与△EDB中,,∴△ADC≌△EDB(SAS),∴EB=AC,根据三角形的三边关系得:BE﹣AB<AE<BE+AB,∴2<AE<12,∵AE=2AD,∴1<AD<6,∴中线AD的最大整数值是5.故答案为:5.【点评】本题主要考查对全等三角形的性质和判定,三角形的三边关系定理等知识点的理解和掌握,能推出2<2AD<12是解此题的关键.26.(2021秋•海陵区校级月考)如图,四边形ABCD中,∠BAD=∠C=90°,AB=AD,AE⊥BC,垂足为E,若线段AE=3,则四边形ABCD的面积是9.【分析】过A点作AF⊥CD交CD的延长线于F点,由AE⊥BC,AF⊥CF,∠C=90°可得四边形AECF为矩形,则∠2+∠3=90°,而∠BAD=90°,根据等角的余角相等得∠1=∠3,加上∠AEB=∠AFD=90°和AB=AD,根据全等三角形的判定可得△ABE≌△ADF,由全等三角形的性质有AE=AF=5,S△ABE=S△ADF,则S四边形ABCD=S正方形AECF,然后根据正方形的面积公式计算即可.【解答】解:过A点作AF⊥CD交CD的延长线于F点,如图,∵AE⊥BC,AF⊥CF,∴∠AEC=∠CFA=90°,而∠C=90°,∴四边形AECF为矩形,∴∠2+∠3=90°,又∵∠BAD=90°,∴∠1=∠3,在△ABE和△ADF中,∵,∴△ABE≌△ADF(AAS),∴AE=AF=3,S△ABE=S△ADF,∴四边形AECF是边长为3的正方形,∴S四边形ABCD=S正方形AECF=32=9.故答案为:9.【点评】本题考查了全等三角形的判定与性质:有两组对应角相等,并且有一条边对应相等的两个三角形全等;全等三角形的对应边相等;全等三角形的面积相等.也考查了矩形的性质.27.(2022秋•广陵区校级月考)已知△ABN和△ACM位置如图所示,∠B=∠C,AD=AE,∠1=∠2.求证:(1)BD=CE;(2)∠M=∠N.【分析】(1)由AAS证明△ABD≌△ACE,得出对应边相等即可;(2)证出∠BAN=∠CAM,由全等三角形的性质得出∠B=∠C,由ASA证明△ACM≌△ABN,得出对应角相等即可.【解答】证明:(1)在△ABD和△ACE中,,∴△ABD≌△ACE(AAS),∴BD=CE;(2)∵∠1=∠2,∴∠1+∠DAE=∠2+∠DAE,即∠BAN=∠CAM,在△ACM和△ABN中,,∴△ACM≌△ABN(ASA),∴∠M=∠N.【点评】本题考查了全等三角形的判定与性质.能够正确证明三角形全等是解决问题的关键.28.(2021秋•句容市月考)如图,在△ABC中,AB=AC=8,BC=12,点D从B出发以每秒2个单位的速度在线段BC上从点B向点C运动,点E同时从C出发以每秒2个单位的速度在线段CA上向点A运动,连接AD、DE,设D、E两点运动时间为t秒(0<t<4)(1)运动3秒时,AE=DC;(2)运动多少秒时,△ABD≌△DCE能成立,并说明理由;(3)若△ABD≌△DCE,∠BAC=α,则∠ADE=90°﹣α(用含α的式子表示).【分析】(1)依据BD=CE=2t,可得CD=12﹣2t,AE=8﹣2t,再根据当AE=DC,时,8﹣2t=(12﹣2t),可得t的值;(2)当△ABD≌△DCE成立时,AB=CD=8,根据12﹣2t=8,可得t的值;(3)依据∠CDE=∠BAD,∠ADE=180°﹣∠CDE﹣∠ADB,∠B=∠180°﹣∠BAD﹣∠ADB,即可得到∠ADE=∠B,再根据∠BAC=α,AB=AC,即可得出∠ADE.【解答】解:(1)由题可得,BD=CE=2t,∴CD=12﹣2t,AE=8﹣2t,∴当AE=DC,时,8﹣2t=(12﹣2t),解得t=3,故答案为:3;(2)当△ABD≌△DCE成立时,AB=C

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论