专题13 等腰三角形常见辅助线的作法(原卷版)_第1页
专题13 等腰三角形常见辅助线的作法(原卷版)_第2页
专题13 等腰三角形常见辅助线的作法(原卷版)_第3页
专题13 等腰三角形常见辅助线的作法(原卷版)_第4页
专题13 等腰三角形常见辅助线的作法(原卷版)_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

专题13等腰三角形常见辅助线的作法(原卷版)类型一作底边中线(连接顶角顶点与底边中点)1.(2023秋•万州区校级月考)如图,在等腰Rt△ABC中,∠C=90°;AC=8,F是AB边上的中点,点D、E分别在AC、BC边上运动,且保持AD=CE,连接DE、DF、EF.在此运动变化过程中,下列结论:①△DEF是等腰直角三角形,②四边形CDFE保持面积不变,③DF的长度处于最小值时,CD的长为4;④S△CDE=S△DEF;其中正确的结论是()A.①②③④ B.①② C.①②④ D.①②③2.(2023•成武县校级三模)如图,△ABC中,AB=AC,D是BC的中点,E、F分别是AB、AC上的点,且AE=AF,求证:DE=DF.3.(2020秋•新华区校级月考)如图,△ABC中,AB=AC,D是BC的中点,过A点的直线EF∥BC,且AE=AF,求证:DE=DF.

4.(2018秋•邻水县校级期末)如图所示,△ABC中,AB=BC,DE⊥AB于点E,DF⊥BC于点D,交AC于F.(1)若∠AFD=155°,求∠EDF的度数;(2)若点F是AC的中点,求证:∠CFD=12∠类型二作底边上的高5.(2022秋•西湖区校级期中)如图,在△ABC中,∠ABC=60°,BC=10,点D在BA的延长线上,CA=CD,BD=6,则AD=()A.1 B.2 C.3 D.46.(2014•甘肃模拟)如图,已知AB=AC,BD⊥AC于点D,求证:∠DBC=12∠7.如图,点D、E分别在BA、AC的延长线上,且AB=AC,AD=AE,求证:DE⊥BC.

8.(2019秋•河池期末)如图,在△ABC中,点D、点E在BC边上,且AB=AC,AD=AE.求证:DB=CE.9.(2022秋•晋江市期中)如图,△ABC中,AC=2AB,AD平分∠BAC交BC于D,E是AD上一点,且EA=EC,求证:EB⊥AB.10.(2023春•市中区期末)小明遇到这样一个问题如图1,△ABC中,∠ACB=90°,点D在AB上,且BD=BC,求证:∠ABC=2∠ACD.小明发现,除了直接用角度计算的方法外,还可以用下面两种方法:方法2:如图2,作BE⊥CD,垂足为点E.方法3:如图3,作CF⊥AB,垂足为点F.根据阅读材料,从三种方法中任选一种方法,证明∠ABC=2∠ACD.

类型三倍长中线法11.(2021秋•南通期中)如图,AD是△ABC的中线,BE交AC于E,交AD于F,且AE=a,EF=a,BF=b,则AC的长为()A.a+b B.2b C.1.5b D.b12.(2023•滕州市模拟)综合与实践小明遇到这样一个问题,如图1,△ABC中,AB=7,AC=5,点D为BC的中点,求AD的取值范围.小明发现老师讲过的“倍长中线法”可以解决这个问题,所谓倍长中线法,就是将三角形的中线延长一倍,以便构造出全等三角形,从而运用全等三角形的有关知识来解决问题的方法,他的做法是:如图2,延长AD到E,使DE=AD,连接BE,构造△BED≌△CAD,经过推理和计算使问题得到解决.请回答:(1)小明证明△BED≌△CAD用到的判定定理是:;(填入你选择的选项字母)A.SASB.SSSC.AASD.ASA(2)AD的取值范围是.小明还发现:倍长中线法最重要的一点就是延长中线一倍,完成全等三角形模型的构造.参考小明思考问题的方法,解决问题:如图3,在正方形ABCD中,E为AB边的中点,G、F分别为AD,BC边上的点,若AG=2,BF=4,∠GEF=90°,求GF的长.

类型四截长补短法13.(2007•沈阳)如图,△ABC是边长为3的等边三角形,△BDC是等腰三角形,且∠BDC=120°.以D为顶点作一个60°角,使其两边分别交AB于点M,交AC于点N,连接MN,则△AMN的周长为.14.(2021秋•龙亭区校级期中)如图,△ABC中,AB=AC,∠A=100°,CD平分∠ACB交AB于D,E为BC上一点,BE=DE.求证:BC=CD+AD.类型五角平分线+平行线构造等腰三角形15.(2022春•驿城区校级期中)如图,已知∠AOB=30°,P是∠AOB的平分线OC上的任意一点,PD∥OA交OB于点D,PE⊥OA于点E,如果OD=8cm,求PE的长.16.(2020秋•秦淮区校级期中)在△ABC中,∠ABC=2∠C,BD平分∠ABC,交AC于D,AE⊥BD,垂足为E.求证:AC=2BE.

17.(2022秋•淮滨县期末)已知A(﹣10,0),以OA为边在第二象限作等边△AOB.(1)求点B的横坐标;(2)如图,点M、N分别为OA、OB边上的动点,以MN为边在x轴上方作等边△MNE,连结OE,当∠EMO=45°时,求∠MEO的度数.类型六角平分线+垂直构造等腰三角形18.(2020秋•朝阳区校级期中)我们知道“对称补缺”的思想是解决与轴对称图形有关的问题的一种重要的添加辅助线的策略,参考这种思想解决下列问题如图,在△ABC中,D为△ABC外

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论