第01讲 用字母表示数(知识解读+真题演练+课后巩固)(解析版)_第1页
第01讲 用字母表示数(知识解读+真题演练+课后巩固)(解析版)_第2页
第01讲 用字母表示数(知识解读+真题演练+课后巩固)(解析版)_第3页
第01讲 用字母表示数(知识解读+真题演练+课后巩固)(解析版)_第4页
第01讲 用字母表示数(知识解读+真题演练+课后巩固)(解析版)_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第01讲用字母表示数能用字母表示以前学过的运算律、计算公式以及一些简单问题中的数量关系和变化规律;能解释一些简单代数式的实际背景或几何意义,发展符号感;能在做题时注意到书写代数式的注意事项;在具体情境中能求出代数式的值,并解释它的实际意义.知识点代数式1.定义:用运算符号(加、减、乘、除、乘方、开方等)把数或表示数的字母连接而成的式子叫做代数式。单独的一个数或一个字母也是代数式。注意:①代数式中除了含有数、字母和运算符号外,还可以有括号;②代数式中不含有“=、>、<、≠”等符号。等式和不等式都不是代数式,但等号和不等号两边的式子一般都是代数式;③代数式中的字母所表示的数必须要使这个代数式有意义,是实际问题的要符合实际问题的意义。2.代数式的书写格式:①代数式中出现乘号,通常省略不写,如vt;②数字与字母相乘时,数字应写在字母前面,如4a;③带分数与字母相乘时,应先把带分数化成假分数,如应写作;④数字与数字相乘,一般仍用“×”号,即“×”号不省略;⑤在代数式中出现除法运算时,一般写成分数的形式,如4÷(a-4)应写作;注意:分数线具有“÷”号和括号的双重作用。⑥在表示和(或)差的代数式后有单位名称的,则必须把代数式括起来,再将单位名称写在式子的后面,如平方米。【题型1:代数式的书写规范】【典例1】(2022秋•朝阳区期末)下列各式中,符合单项式书写要求的是()A.a×b2 B.﹣1ab C. D.【答案】C【解答】解:A.a×b2应写为ab2,故不符合题意;B.﹣1ab应写为﹣ab,故不符合题意;C.,正确,符合题意;D.应写为,故不符合题意.故选:C.【变式1-1】(2022秋•射洪市期末)下列代数式中符合书写要求的是()A.3ab B.a÷b C.(50﹣a)元 D.﹣1ab【答案】C【解答】解:A:原式=ab;B:原式=;C:原式=(50﹣a)元;D:原式=﹣ab;故选:C.【变式1-2】(2022秋•宁明县期末)下列式子符合书写要求的是()A.﹣ B.a﹣1÷b C.4xy D.ab×3【答案】A【解答】解:A.﹣符合代数式书写要求;B.a﹣1÷b不符合代数式书写要求,应该写成a﹣;C.4xy不符合代数式书写要求,应该写成xy;D.ab×3不符合代数式书写要求,应该写成3ab.故选:A.【变式1-3】(2022秋•闵行区期中)下列各式中,是代数式的有()①3xy2;②2πr;③S=πr2;④b;⑤5+1>2;⑥.A.3个 B.4个 C.5个 D.6个【答案】B【解答】解:由代数式的定义可知,是代数式的有:①3xy2;②2πr;④b;⑥,共4个.故选:B.【题型2:代数式的意义】【典例2】(2022秋•东平县校级期末)若x表示某件物品的原价,则式子(1﹣10%)x表示的意义是()A.该物品价格上涨10%时上涨的价格 B.该物品价格下降10%时下降的价格 C.该物品价格上涨10%后的售价 D.该物品价格下降10%后的售价【答案】D【解答】解:若x表示某件物品的原价,则代数式(1﹣10%)x表示的意义是该物品价格下降10%后的售价.故选:D.【变式2-1】(2022秋•邢台期末)代数式3(y﹣3)的正确含义是()A.3乘y减3 B.y的3倍减去3 C.y与3的差的3倍 D.3与y的积减去3【答案】C【解答】解:代数式3(y﹣3)的正确含义应是y与3的差的3倍.故选:C.【变式2-2】(2023•开封一模)如果水位升高3m记作“+3m”,那么“﹣3m”表示的意义是水位下降3m.【答案】水位下降3m.【解答】解:∵正负数表示两种具有相反意义的量,∴如果水位升高3m记作“+3m”,那么“3m”表示的意义就是水位下降3m,故答案为:水位下降3m.【变式2-3】(2022秋•栾城区期中)某超市的苹果价格如图,试说明代数式100﹣7.9x的实际意义用100元买每斤7.9元的苹果x斤余下的钱.【答案】用100元买每斤7.9元的苹果x斤余下的钱,【解答】解:代数式100﹣7.9x的实际意义为:用100元买每斤7.9元的苹果x斤余下的钱.故答案为:用100元买每斤7.9元的苹果x斤余下的钱.【题型3:列代数式(数字问题)】【典例3】(2023•古冶区二模)某两位数,十位数字为a,个位数字为b,将其十位上的数与个位上的数交换位置,得到一个新的两位数,新两位数用代数式表示为()A.ba B.a+b C.10a+b D.10b+a【答案】D【解答】解:∵十位数字为a,个位数字为b,将其十位上的数与个位上的数交换位置,得到一个新的两位数,∴新的两位数的十位数字为b,个位数字为a,这个新的两位数用代数式表示为10b+a,故选:D.【变式3-1】(2022秋•永兴县期末)列代数式:一个两位数,它的十位数字是x,个位数字是y,则这个两位数是10x+y.【答案】10x+y.【解答】解:十位数字为x,个位数字为y的意义是x个10与y个1的和为:10x+y,故答案为:10x+y.【变式3-2】(2022秋•滨城区校级期末)已知a是两位数,b是一位数,把b接在a的后面,就成了一个三位数,这个三位数可以表示为()A.a+b B.100b+a C.100a+b D.10a+b【答案】D【解答】解:由题意可得,这个三位数是10a+b,故选:D.【变式3-3】(2022秋•文登区期末)一个两位数,个位数字是a,十位数字比个位数字小2,这个两位数可表示为()A.11a﹣2 B.11a+2 C.11a+20 D.11a﹣20【答案】D【解答】解:根据题意知十位数字为a﹣2,则这个两位数为10(a﹣2)+a=11a﹣20,故选:D.【题型4:列代数式(和倍差问题)】【典例4】(2023•濉溪县模拟)某服装店新上一款运动服,第一天销售了m件,第二天的销售量是第一天的两倍少3件,第三天比第二天多销售5件,则第三天的销售量是()A.(m+2)件 B.(2m﹣2)件 C.(2m+2)件 D.(2m+8)件【答案】C【解答】解:∵第一天销售了m件,第二天的销售量是第一天的两倍少3件,即2m﹣3,第三天比第二天多销售5件,即2m﹣3+5=2m+2,∴第三天的销售量是(2m+2)件,故选:C.【变式4-1】(2022秋•川汇区期末)小明买单价p元的商品n件,给卖家q元,应找回(q﹣pn)元.【答案】(q﹣pn).【解答】解:依题意得找回钱数为:(q﹣pn)元故答案为:(q﹣pn).【变式4-2】(2022秋•海安市期末)某件商品原价b元,先打八折,再降价10元,则现在的售价是(0.8b﹣10)元.【答案】(0.8b﹣10).【解答】解:∵商品原价b元,先打八折,再降价10元,∴现在的售价是(0.8b﹣10)元,故答案为:(0.8b﹣10).【变式4-3】(2022秋•湘潭县期末)为向党的二十大献礼,某校成功举办了“经典诵读”比赛,其中参加比赛的男同学有a人,女同学比男同学的少24人,则参加“经典诵读”比赛的学生一共有()A.人 B.人 C.人 D.人【答案】D【解答】解:∵参加比赛的男同学有a人,女同学比男同学的少24人,∴参赛的女同学人数为人,∴参加“经典诵读”比赛的学生一共有人,故选:D.【题型5:列代数式(百分率问题)】【典例5】(2023•贵池区一模)某产品的成本价为a元,销售价比成本价增加了14%,现因库存积压,按销售价的八折出售,那么该产品的实际售价为()A.(1+14%)(1+0.8)a元 B.0.8(1+14%)a元 C.(1+14%)(1﹣0.8)a元 D.(1+14%+0.8)a元【答案】B【解答】解:a×(1+14%)×80%=0.8(1+14%)a(元).故选:B.【变式5-1】(2022秋•嘉峪关校级期末)某工厂去年生产了x台机床,今年增长了35%,今年的产量为(x+35%x)台.【答案】x(1+35%).【解答】解:增长产量为35%x.∴今年产量为x+35%x=x(1+35%).故答案为:x(1+35%).【变式5-2】(2022秋•福田区校级期末)一件商品的进价是a元,提价30%后出售,则这件商品的售价是1.3a元.【答案】1.3a.【解答】解:依题意,得商品的售价=a+30%a=1.3a(元).故答案为:1.3a元.【变式5-3】(2023•抚松县三模)一台扫描仪的成本价为n元,销售价比成本价提高了30%,为尽快打开市场,按销售价的八折优惠出售.则优惠后每台扫描仪的实际售价为1.04n元.【答案】见试题解答内容【解答】解:由题意可得,优惠后每台扫描仪的实际售价为:n(1+30%)×0.8=1.04n(元),故答案为:1.04n.【变式5-4】(2023•瓯海区二模)某企业今年1月份产值为a万元,2月份比1月份减少了10%,3月份比2月份增加了15%,则3月份的产值是()A.(a﹣10%)(a+15%)万元 B.a(1﹣90%)(1+85%)万元 C.a(1﹣10%)(1+15%)万元 D.a(1﹣10%+15%)万元【答案】C【解答】解:∵1月份产值为a万元,2月份比1月份减少了10%,3月份比2月份增加了15%,∴3月份的产值为:a(1﹣10%)(1+15%)万元.故选:C.【题型6:列代数式(几何图形问题)】【典例6】(2022秋•微山县期末)如图1,将一个边长为a的正方形纸片剪去两个矩形,得到一个“S”的图案,如图2所示,再将剪下的两个小矩形拼成一个新的矩形,如图3所示,则新矩形的周长可表示为()A.2a﹣2b B.2a﹣4b C.4a﹣8b D.4a﹣9b【答案】C【解答】解:根据题意得:新矩形的长为a﹣b,宽为a﹣3b,则新矩形周长为2(a﹣b+a﹣3b)=2(2a﹣4b)=4a﹣8b,故选:C.【变式6-1】(2023•安庆一模)一个矩形的周长为50,若矩形的一边长用字母x表示,则此矩形的面积为()A.x(25﹣x) B.x(50﹣x) C.x(50﹣2x) D.x(25+x)【答案】A【解答】解:∵一个矩形的周长为50,矩形的一边长为x,∴矩形另一边长为:25﹣x,故此矩形的面积为:x(25﹣x).故选:A.【变式6-2】(2022秋•东港市期末)如图,阴影部分的周长为()A.3.5x+5y B.3.5x+6y C.4x+5y D.4x+6y【答案】D【解答】解:根据题意,阴影部分的周长为:2(2x+2y)+2y=4x+6y.观察选项,只有选项D符合题意.故选:D.【变式6-3】(2022秋•防城港期末)如图,一块直径为a+b的圆形钢板,从中挖去直径分别为a和b的两个圆,则剩下的钢板的面积为()A.2abπ B.2a2b2π C. D.【答案】D【解答】解:S剩下=S大圆﹣S小圆1﹣S小圆2===.故选:D.【题型7:代数式-整体法代入求值】【典例7】(2022秋•江北区校级期末)若整式2x2+5x的值为8,那么整式6x2+15x﹣10的值是.【答案】14.【解答】解:∵2x2+5x=8,∴6x2+15x﹣10=3(2x2+5x)﹣10=3×8﹣10=24﹣10=14.故答案为:14.【变式7-1】(2022秋•兴化市校级期末)若2x﹣y=﹣3,则2﹣6x+3y的值是11.【答案】11.【解答】解:∵2x﹣y=﹣3,∴2﹣6x+3y=2﹣3(2x﹣y)=2﹣3×(﹣3)=2+9=11,故答案为:11.【变式7-2】(2023•遵义模拟)已知x﹣3y=2,则代数式﹣x+3y+5=3.【答案】3.【解答】解:∵x﹣3y=2,∴原式=﹣(x﹣3y)+5=﹣2+5=3.故答案为:3.【变式7-3】(2023•丹江口市模拟)若m﹣n=﹣2,则2﹣5m+5n的值为12.【答案】12.【解答】解:∵m﹣n=﹣2,2﹣5m+5n=2﹣5(m﹣n),∴2﹣5m+5n=2﹣5(m﹣n)=2﹣5×(﹣2)=12,故答案为:12.【变式7-4】(2022秋•鼓楼区校级期末)整式x2﹣3x的值是4,则3x2﹣9x+8的值是20.【答案】20.【解答】解:∵x2﹣3x=4,∴3x2﹣9x+8=3(x2﹣3x)+8=3×4+8=20.故答案为:20.【题型8:规律题】【典例8】(2022秋•安庆期末)一只小球落在数轴上的某点P0处,第一次从P0处向右跳1个单位到P1处,第二次从P1向左跳2个单位到P2处,第三次从P2向右跳3个单位到P3处,第四次从P3向左跳4个单位到P4处…,若小球按以上规律跳了(2n+3)次时,它落在数轴上的点P2n+3处所表示的数恰好是n﹣3,则这只小球的初始位置点P0所表示的数是()A.﹣4 B.﹣5 C.n+6 D.n+3【答案】B【解答】解:设点P0所表示的数是a,则点P1所表示的数是a+1,点P,2所表示的数是a+1﹣2=a﹣1,点P3所表示的数是a﹣1+3=a+2,点P4所表示的数是a+2﹣4=a﹣2,∵点P(2n+3)所表示的数是n﹣3,∴a+=n﹣3,解得,a=﹣5,故选:B【变式8-1】(2022•云岩区模拟)“数学是将科学现象升华到科学本质认识的重要工具”,比如在化学中,乙烯的化学式是C2H4,丙烯的化学式是C3H6…,碳原子和氢原子的数目满足一定数学规律.设碳原子的数目为n(n为正整数,且n≥2),则这类烯的化学式可用式子∁nH2n来表示.【答案】∁nH2n.【解答】解:根据题意,这类烯的化学式为∁nH2n.故答案为:∁nH2n.【变式8-2】(2023•孟村县二模)如图,学校准备新建一个长度为L的读书长廊,并准备用若干块带有花纹和没有花纹的两种规格大小相同的正方形地面砖搭配在一起,按图中所示的规律拼成图案铺满长廊,已知每个小正方形地面砖的边长均为0.5m.(1)按图示规律,第一图案的长度L1=1.5m;第二个图案的长度L2=2.5m;(2)用代数式表示带有花纹的地面砖块数n与走廊的长度Ln(m)之间的关系L=0.5(2n+1).【答案】见试题解答内容【解答】解:(1)第一图案的长度L1=0.5×3=1.5,第二个图案的长度L2=0.5×5=2.5;(2)观察可得:第1个图案中有花纹的地面砖有1块,第2个图案中有花纹的地面砖有2块,…故第n个图案中有花纹的地面砖有n块;第一个图案边长L=3×0.5,第二个图案边长L=5×0.5,则第n个图案边长为Ln=0.5(2n+1).故答案为:0.9,1.5;0.5(2n+1)1.(2022•长沙)为落实“双减”政策,某校利用课后服务开展了主题为“书香满校园”的读书活动.现需购买甲,乙两种读本共100本供学生阅读,其中甲种读本的单价为10元/本,乙种读本的单价为8元/本,设购买甲种读本x本,则购买乙种读本的费用为()A.8x元 B.10(100﹣x)元 C.8(100﹣x)元 D.(100﹣8x)元【答案】C【解答】解:设购买甲种读本x本,则购买乙种读本的费用为:8(100﹣x)元.故选:C.2.(2022•杭州)某体育比赛的门票分A票和B票两种,A票每张x元,B票每张y元.已知10张A票的总价与19张B票的总价相差320元,则()A.||=320 B.||=320 C.|10x﹣19y|=320 D.|19x﹣10y|=320【答案】C【解答】解:由题意可得:|10x﹣19y|=320.故选:C.3.(2021•青海)一个两位数,它的十位数字是x,个位数字是y,那么这个两位数是()A.x+y B.10xy C.10(x+y) D.10x+y【答案】D【解答】解:一个两位数,它的十位数字是x,个位数字是y,这个两位数10x+y.故选:D.4.(2021•温州)某地居民生活用水收费标准:每月用水量不超过17立方米,每立方米a元;超过部分每立方米(a+1.2)元.该地区某用户上月用水量为20立方米,则应缴水费为()A.20a元 B.(20a+24)元 C.(17a+3.6)元 D.(20a+3.6)元【答案】D【解答】解:根据题意知:17a+(20﹣17)(a+1.2)=(20a+3.6)(元).故选:D.5.(2023•萧山区一模)植树节,某校需完成一定的植树任务,其中九年级共种了任务数的一半,八年级种了剩下任务数的,七年级共种了a棵树苗.则该校植树的任务数为()棵.A.6a B.5a C.4a D.3a【答案】A【解答】解:该校植树的任务数为a÷(1﹣﹣×)=a÷=6a,故选:A6.(2022•邵阳)已知x2﹣3x+1=0,则3x2﹣9x+5=2.【答案】2.【解答】解:∵x2﹣3x+1=0,∴x2﹣3x=﹣1,则原式=3(x2﹣3x)+5=﹣3+5=2.故答案为:2.7.(2022•吉林)篮球队要购买10个篮球,每个篮球m元,一共需要10m元.(用含m的代数式表示)【答案】10m.【解答】解:篮球队要买10个篮球,每个篮球m元,一共需要10m元,故答案为:10m1.(2022秋•确山县期末)下列各式符合代数式书写规范的是()A.a8 B. C.m﹣1元 D.1x【答案】B【解答】解:A、数字应写在前面正确书写形式为8a,故本选项错误;B、书写形式正确,故本选项正确;C、正确书写形式为(m﹣1)元,故本选项错误;D、正确书写形式为x,故本选项错误,故选:B.2.(2022秋•达川区校级期末)有一“数值转换机”如图所示,则输出的结果为()A.x B. C. D.【答案】C【解答】解:由图可得,输出的结果为:(x﹣2)÷3=,故选:C.3.(2022秋•馆陶县期末)“a与b的差的5倍”用代数式表示为()A. B.5(a﹣b) C.5a﹣b D.a﹣5b【答案】B【解答】解:“a与b的差的5倍”用代数式表示为:5(a﹣b).故选:B.4.(2022秋•三亚期末)买一个篮球需要m元,买一个排球要n元,则买3个篮球、7个排球共需要()A.(7m+3n)元 B.(3m+7n)元 C.10mn元 D.21mn元【答案】B【解答】解:买3个篮球和5个排球共需要(3m+7n)元;故选:B.5.(2022秋•沅江市期末)一件校服,按标价的6折出售,售价是x元,这件校服的标价是()A.0.6x元 B.元 C.0.4x元 D.元【答案】B【解答】解:x=标价×0.6;所以,标价=元.故选:B.6.(2022秋•永川区期末)如果代数式4y2﹣2y+5的值是7,那么代数式2y2﹣y+1的值等于()A.2 B.3 C.﹣2 D.4【答案】A【解答】解:∵4y2﹣2y+5=7,∴2y2﹣y=1,∴2y2﹣y+1=1+1=2.故选:A.7.(2022秋•大兴区校级期末)当x=1时,代数式px3+qx+1的值为2022,则当x=﹣1时,代数式px3+qx+1的值为()A.﹣2019 B.﹣2020 C.﹣2021 D.﹣2022【答案】B【解答】解:∵当x=1时,代数式px3+qx+1的值为2022,∴p+q+1=2022,∴p+q=2021.∴当x=﹣1时,代数式px3+qx+1=﹣p﹣q+1=﹣(p+q)+1=﹣2021+1=﹣2020.故选:B.8.(2022秋•清河区校级期末)若2x2+3x﹣5=0,则代数式﹣4x2﹣6x+9的值是()A.4 B.5 C.﹣1 D.14【答案】C【解答】解:∵2x2+3x﹣5=0,∴2x2+3x=5,∴﹣4x2﹣6x+9=﹣2(2x2+3x)+9=﹣2×5+9=﹣1.故选:C.9.(2022秋•榆树市期中)一个两位数,十位上的数字是a,个位上的数字是b,如果把十位上的数与个位上的数对调,所得的两位数是()A.ba B.b+a C.10b+a D.10a+b【答案】C【解答】解:由题意得:这个两位数是:10b+a.故选:C.10.(2022秋•惠城区校级期末)一种商品每件成本为a元,原来按成本增加40%定出售价,现在由于库存积压减价,打八折出售,则每件盈利()元.A.0.1a B.0.12a C.0.15a D.0.2a【答案】B【解答】解:依题意有:a×(1+40%)×80%﹣a=0.12a(元).故选:B.11.(2022春•莱州市期中)圆的半径为r厘米,若半径增加3厘米,则新圆的面积比原来圆的面积增加了()A.9π平方厘米 B.3π(2r﹣3)平方厘米 C.3π(2r+3)平方厘米 D.π(r+3)2平面厘米【答案】C【解答】解

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论