版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
北京市宣武区名校2023年数学八上期末教学质量检测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题3分,共30分)1.如图,线段AB、CD相交于点O,AO=BO,添加下列条件,不能使的是()A.AC=BD B.∠C=∠D C.AC∥BD D.OC=OD2.若am=8,an=16,则am+n的值为()A.32 B.64 C.128 D.2563.已知直角三角形的两条边长分别是3cm和4cm,则它的第三边长为()A.4cm B.cm C.5cm D.5cm或cm4.计算的结果是()A. B. C. D.5.如果一个多边形的每个内角的度数都是108°,那么这个多边形的边数是()A.3 B.4 C.5 D.66.如图,在中,分别是边的中点,已知,则的长()A. B. C. D.7.9的算术平方根是()A.3 B.-3 C. D.以上都对8.如图,AB∥CD,BC平分∠ABD,∠1=50°,则∠2的度数是()A. B. C. D.9.下列各图中a、b、c为三角形的边长,则甲、乙、丙三个三角形和左侧△ABC全等的是()A.甲和乙 B.乙和丙 C.甲和丙 D.只有丙10.如图,在中,,是的两条中线,是上一个动点,则下列线段的长度等于最小值的是()A.2 B. C.1 D.二、填空题(每小题3分,共24分)11.用反证法证明“等腰三角形的底角是锐角”时,首先应假设_____12.若,则_________13.如图,∠AOB=30°,点P是它内部一点,OP=2,如果点Q、点R分别是OA、OB上的两个动点,那么PQ+QR+RP的最小值是__________.14.对于任意不相等的两个数a,b,定义一种运算※如下:a※b=,如3※2=.那么4※8=________.15.如图,平分,平分,与交于,若,,则的度数为_________.(用表示)16.在某中学举行的演讲比赛中,七年级5名参赛选手的成绩如下表所示,根据表中提供的数据,则3号选手的成绩为_____.选手1号2号3号4号5号平均成绩得分909589889117.如图1,将正方形置于平面直角坐标系中,其中边在轴上,其余各边均与坐标轴平行.直线沿轴的负方向以每秒1个单位的速度平移,在平移的过程中,该直线被正方形的边所截得的线段长为,平移的时间为(秒),与的函数图象如图2所示,则图1中的点的坐标为__________,图2中的值为__________.18.正七边形的内角和是_____.三、解答题(共66分)19.(10分)如图1,在中,于E,,D是AE上的一点,且,连接BD,CD.试判断BD与AC的位置关系和数量关系,并说明理由;如图2,若将绕点E旋转一定的角度后,试判断BD与AC的位置关系和数量关系是否发生变化,并说明理由;如图3,若将中的等腰直角三角形都换成等边三角形,其他条件不变.试猜想BD与AC的数量关系,请直接写出结论;你能求出BD与AC的夹角度数吗?如果能,请直接写出夹角度数;如果不能,请说明理由.20.(6分)如图,已知∠1=∠2,∠C=∠D,求证:∠A=∠F.21.(6分)如图,已知一次函数y=mx+3的图象经过点A(2,6),B(n,-3).求:(1)m,n的值;(2)△OAB的面积.22.(8分)阅读下列解题过程,并解答下列问题.(1)观察上面的解题过程,请直接写出式子(2)计算:23.(8分)如图,在Rt△ABC中,∠ACB=90°,CD是AB边上的高,(1)尺规作图:作△ABC的角平分线AE,交CD于点F(不写作法,保留作图痕迹);(2)求证:△CEF为等腰三角形.24.(8分)为进一步打造“宜居重庆”,某区拟在新竣工的矩形广场的内部修建一个音乐喷泉,要求音乐喷泉M到广场的两个入口A、B的距离相等,且到广场管理处C的距离等于A和B之间距离的一半,A、B、C的位置如图所示.请在答题卷的原图上利用尺规作图作出音乐喷泉M的位置.(要求:不写已知、求作、作法和结论,保留作图痕迹,必须用铅笔作图)25.(10分)2019年10月,某市高质量通过全国文明城市测评,该成绩的取得得益于领导高度重视(A)、整改措施有效(B)、市民积极参与(C)、市民文明素质(D).某数学兴趣小组随机走访了部分市民,对这四项认可度进行调查(只选填最认可的一项),并将调查结果制作了如下两幅不完整的统计图.(1)请补全D项的条形图;(2)已知B、C两项条形图的高度之比为3:1.①选B、C两项的人数各为多少个?②求α的度数,26.(10分)太原市积极开展“举全市之力,创建文明城市”活动,为年进人全国文明城市行列莫定基础.某小区物业对面积为平方米的区域进行了绿化,整项工程由甲、乙两个林队先后接力完成,甲园林队每天绿化平方米,乙园林队每天绿化平方米,两队共用天.求甲乙两个园林队在这项绿化工程中分别工作了多少天.
参考答案一、选择题(每小题3分,共30分)1、A【分析】已知AO=BO,由对顶角相等可得到∠AOC=∠BOD,当添加条件A后,不能得到△AOC≌△BOD;接下来,分析添加其余选项的条件后能否得到证明三角形全等的条件,据此解答【详解】解:题目隐含一个条件是∠AOC=∠BOD,已知是AO=BOA.加AC=BD,根据SSA判定△AOC≌△BOD;B.加∠C=∠D,根据AAS判定△AOC≌△BOD;C.加AC∥BD,则ASA或AAS能判定△AOC≌△BOD;D.加OC=OD,根据SAS判定△AOC≌△BOD故选A【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.2、C【分析】逆用同底数幂的乘法公式可得,再整体代入求值即可.【详解】当am=8,an=16时,,故选C.【点睛】计算题是中考必考题,一般难度不大,学生要特别慎重,尽量不在计算上失分.3、D【分析】分4为直角边和斜边两种情况,结合勾股定理求得第三边即可.【详解】设三角形的第三边长为xcm,由题意,分两种情况:当4为直角边时,则第三边为斜边,由勾股定理得:,解得:x=5,当4为斜边时,则第三边为直角边,由勾股定理得:,解得:x=,∴第三边长为5cm或cm,故选:D.【点睛】本题考查了勾股定理,解答的关键是分类确定4为直角边还是斜边.4、A【分析】把分子与分母能因式分解的先进行因式分解,然后再约分即可得到答案.【详解】.故选:A.【点睛】此题主要考查了分的乘法运算,正确掌握分式的基本性质是解题的关键.5、C【分析】首先计算出多边形的外角的度数,再根据外角和÷外角度数=边数可得答案.【详解】解:∵多边形的每个内角都是108°,∴每个外角是180°﹣108°=72°,∴这个多边形的边数是360°÷72°=5,∴这个多边形是五边形,故选C.【点睛】此题主要考查了多边形的外角与内角,关键是掌握多边形的外角与它相邻的内角互补.6、D【分析】由D,E分别是边AB,AC的中点,首先判定DE是三角形的中位线,然后根据三角形的中位线定理求得DE的值即可.【详解】∵△ABC中,D,E分别是边AB,AC的中点,∴DE是△ABC的中位线,故DE=AD=×10=1.故选:D.【点睛】考查三角形中位线定理,中位线是三角形中的一条重要线段,由于它的性质与线段的中点及平行线紧密相连,因此,它在几何图形的计算及证明中有着广泛的应用.7、A【分析】根据算术平方根的定义解答即可.【详解】∵,∴9的算术平方根是3,故选:A.【点睛】此题考查算术平方根的定义:如果一个正数的平方等于a,那么这个正数即是a的算术平方根,熟记定义是解题的关键.8、D【分析】利用角平分线和平行的性质即可求出.【详解】∵AB∥CD∴∠ABC=∠1=50°,∠ABD+∠BDC=180°,∵BC平分∠ABD,∴∠ABD=2∠ABC=100°,∴∠BDC=180°-∠ABD=80°,∴∠2=∠BDC=80°.故选D.【点睛】本题考查的是平行,熟练掌握平行的性质和角平分线的性质是解题的关键.9、B【解析】分析:根据三角形全等的判定方法得出乙和丙与△ABC全等,甲与△ABC不全等.详解:乙和△ABC全等;理由如下:在△ABC和图乙的三角形中,满足三角形全等的判定方法:SAS,所以乙和△ABC全等;在△ABC和图丙的三角形中,满足三角形全等的判定方法:AAS,所以丙和△ABC全等;不能判定甲与△ABC全等;故选B.点睛:本题考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.10、B【分析】根据轴对称的性质可知,点B关于AD对称的点为点C,故当P为CE与AD的交点时,BP+EP的值最小.【详解】解:∵△ABC是等边三角形,AD是BC边上的中线,∴AD⊥BC∴点B关于AD对称的点为点C,∴BP=CP,∴当P为CE与AD的交点时,BP+EP的值最小,即BP+EP的最小值为CE的长度,∵CE是AB边上的中线,∴CE⊥AB,BE=,∴在Rt△BCE中,CE=,故答案为:B.【点睛】本题考查了等边三角形的性质、轴对称的性质,解题的关键是找到当P为CE与AD的交点时,BP+EP的值最小.二、填空题(每小题3分,共24分)11、等腰三角形的底角是钝角或直角【解析】根据反证法的第一步:假设结论不成立设,可以假设“等腰三角形的两底都是直角或钝角”.
故答案是:等腰三角形的两底都是直角或钝角.12、18【分析】根据同底数幂的乘法的逆运算、幂的乘方的逆运算求解即可.【详解】将代入得:原式.【点睛】本题考查了同底数幂的乘法的逆运算、幂的乘方的逆运算,熟记运算法则是解题关键.13、1【分析】先作点P关于OA,OB的对称点P′,P″,连接P′P″,由轴对称确定最短路线问题,P′P″分别与OA,OB的交点即为Q,R,△PQR周长的最小值=P′P″,由轴对称的性质,可证∠POA=∠P′OA,∠POB=∠P″OB,OP′=OP″=OP=1,∠P′OP″=1∠AOB=1×30°=60°,继而可得△OP′P″是等边三角形,即PP′=OP′=1.【详解】作点P关于OA,OB的对称点P′,P″,连接P′P″,由轴对称确定最短路线问题,P′P″分别与OA,OB的交点即为Q,R,△PQR周长的最小值=P′P″,由轴对称的性质,∠POA=∠P′OA,∠POB=∠P″OB,OP′=OP″=OP=1,所以,∠P′OP″=1∠AOB=1×30°=60°,所以,△OP′P″是等边三角形,所以,PP′=OP′=1.故答案为:1.【点睛】本题主要考查轴对称和等边三角形的判定,解决本题的关键是要熟练掌握轴对称性质和等边三角形的判定.14、【分析】根据定义新运算公式和二次根式的乘法公式计算即可.【详解】解:根据题意可得4※8=故答案为:.【点睛】此题考查的是定义新运算和二次根式的化简,掌握定义新运算公式和二次根式的乘法公式是解决此题的关键.15、【分析】连接BC,根据三角形内角和定理可求得∠DBC+∠DCB的度数,再根据三角形内角和定理及三角形角平分线的定义可求得∠ABC+∠ACB的度数,从而不难求得∠A的度数.【详解】连接BC.∵∠BDC=m°,∴∠DBC+∠DCB=180°-m°,∵∠BGC=n°,∴∠GBC+∠GCB=180°-n°,∴∠GBD+∠GCD=(180°-n°)-(180°-m°)=m°-n°,∵BF是∠ABD的平分线,CE是∠ACD的平分线,∴∠ABD+∠ACD=2∠GBD+2∠GCD=2m°-2n°,∴∠ABC+∠ACB=2m°-2n°+180°-m°=180°+m°-2n°,∴∠A=180°-(∠ABC+∠ACB)=180°-(180°+m°-2n°)=2n°-m°,故答案为2n°-m°.【点睛】本题考查的是三角形内角和定理,根据题意作出辅助线,构造出三角形是解答此题的关键.16、1【分析】先求出5名参赛选手的总成绩,再减去其它选手的成绩,即可得出3号选手的成绩.【详解】解:∵观察表格可知5名选手的平均成绩为91分,∴3号选手的成绩为91×5﹣90﹣95﹣89﹣88=1(分);故答案为:1.【点睛】此题考查了算术平均数,掌握算术平均数的计算方法是解题的关键.17、(1,0)5【解析】令直线y=x-3=0,解得x=3,即可得直线y=x-3与x轴的交点坐标为(3,0),根据图可知,开始平移2s后直线到达点A,所以点A横坐标为3-2=1,所以点A坐标为(1,0);由图象2可知,直线y=x-3平移12s时,正好经过点C,此时平移后的直线与x轴交点的横坐标为(-9,0),所以点A到这个交点的距离为10,即可得AD=5,根据勾股定理求得BD=5,当y=x-3平移到BD的位置时m最大,即m最大为5,所以b=5.点睛:本题主要考查了一次函数图像的平移,根据图象获取信息是解决本题的关键.18、900°【分析】由n边形的内角和是:180°(n-2),将n=7代入即可求得答案.【详解】解:七边形的内角和是:180°×(7-2)=900°.
故答案为:900°.【点睛】此题考查了多边形的内角和公式.此题比较简单,注意熟记公式:n边形的内角和为180°(n-2)是解此题的关键.三、解答题(共66分)19、(1)见解析;(2)见解析;(3)①BD=AC理由见解析;见解析.【解析】(1)可以证明△BDE≌△ACE推出BD=AC,BD⊥AC.(2)如图2中,不发生变化.只要证明△BED≌△AEC,推出BD=AC,∠BDE=∠ACE,由∠DEC=90°,推出∠ACE+∠EOC=90°,因为∠EOC=∠DOF,所以∠BDE+∠DOF=90°,可得∠DFO=180°-90°=90°,即可证明.(3)①如图3中,结论:BD=AC,只要证明△BED≌△AEC即可.②能;由△BED≌△AEC可知,∠BDE=∠ACE,推出∠DFC=180°-(∠BDE+∠EDC+∠DCF)=180°-(∠ACE+∠EDC+∠DCF)=180°-(60°+60°)=60°即可解决问题.【详解】解:,,
理由是:延长BD交AC于F.
,
,
在和中
≌,
,,
,
,
,
,
,
;
不发生变化.
如图2,令AC、DE交点为O
理由:,
,
,
在和中
≌,
,,
,
,
,
,
,
;(3);
证明:和是等边三角形,
,,,,
,
,
在和中
≌,
.②夹角为.
解:如图3,令AC、BD交点为F,
由①知≌,
,
,即BD与AC所成的角的度数为或【点睛】本题考查了等边三角形性质,等腰直角三角形的性质,全等三角形的性质和判定的应用,主要考查了学生的推理能力,熟练掌握几何变换是解题的关键.20、详见解析【解析】先根据,得出,故,可得,再由可知即可得到.【详解】证明:∵∠2=∠3,∠1=∠2,∴∠1=∠3,∴BD∥CE,∴∠C=∠ABD,∵∠C=∠D,∴∠ABD=∠D,∴DF∥AC,∴∠A=∠F.【点睛】本题考查的是平行线的判定与性质,用到的知识点为:同位角相等,两直线平行;内错角相等,两直线平行.21、(1)n=-4;(2)9.【解析】(1)根据点A的坐标利用待定系数法可求出m值,进而可得出一次函数解析式,再利用一次函数图象上点的坐标特征即可求出n值;(2)令直线AB与y轴的交点为C,由直线解析式可求得点C(0,3),再根据S△OAB=S△OCA+S△OCB进行求解即可.【详解】(1)∵一次函数y=mx+3的图象经过点A(2,6),∴6=2m+3,∴m=,∴一次函数的表达式为y=x+3.又∵一次函数y=x+3的图象经过点B(n,-3),∴-3=n+3,∴n=-4.(2)令直线AB与y轴的交点为C,当x=0时,y=3,∴C(0,3),∴S△OAB=S△OCA+S△OCB=×3×2+×3×|-4|=9.【点睛】本题考查了待定系数法,一次函数图象与坐标轴围成的三角形的面积等,利用待定系数法求出函数解析式是解本题的关键.22、(1);(2)【分析】(1)根据题意,将其分母有理化化简即可;(2)根据已知式子的规律,变形化简即可.【详解】解:(1)故答案为:;(2)原式【点睛】此题考查的是分母有理化的应用,掌握利用分母有理化化简是解决此题的关键.23、(1)详见解析;(2)详见解析.【分析】(1)以A为圆心,任意长为半径画弧交AC、AB于M、N,分别以M、N为圆心大于MN长为半径画弧,两弧交于点P,直线射线AP交BC于E,线段AE即为所求;4(2)只要证明∠CEF=∠CFE,即可推出CE=CF;【详解】(1)如图线段AE即为所求;(2)证明:∵CD⊥A
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年海鲜冷冻库租赁合同
- 2024年度旅游度假村经营管理合同规范范本2篇
- 2024年农机具研发合作与技术转移合同3篇
- 2024年度网络大电影资金筹集与分成协议2篇
- 2024年个人经营性房产抵押贷款3篇
- 2024年智能穿戴设备核心配件全球采购合作协议3篇
- 2024年度全职妈妈离婚前子女监护权争夺策略合同3篇
- 2024年度石油挖掘机分包作业合同3篇
- 2024年废弃设备拆解协议3篇
- 2024年度技术转让合同生物医药2篇
- 说明文方法和作用说明文语言准确性中国石拱桥公开课获奖课件省赛课一等奖课件
- 中南运控课设-四辊可逆冷轧机的卷取机直流调速系统设计
- 酒店建设投标书
- 《基于javaweb的网上书店系统设计与实现》
- 《皇帝的新装》课件
- 国家开放大学电大《基础写作》期末题库及答案
- 劳动教育五年级上册北师大版 衣服破了我会补(教案)
- DB3502∕T 139-2024“无陪护”医院服务规范通 用要求
- 期中模拟练习(试题)-2024-2025学年统编版语文二年级上册
- 人教版九年级历史下册第10课-《凡尔赛条约》和《九国公约》(共31张课件)
- 2023年法律职业资格《客观题卷一》真题及答案
评论
0/150
提交评论