版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022年湖南省邵阳市中考数学试卷
一、选择题(本大题有10个小题,每小题3分,共30分.在每小题给出的四个选项中,
只有一项是符合题目要求的)
1.(3分)-2022的绝对值是()
A.」一B.-2022C.2022D.———
20222022
2.(3分)下列四种图形中,对称轴条数最多的是()
A.等边三角形B.圆C.长方形D.正方形
3.(3分)5月29日腾讯新闻报道,2022年第一季度,湖南全省地区生产总值约为11000
亿元,11000亿用科学记数法可表示为则°的值是()
A.0.11B.1.1C.11D.11000
4.(3分)下列四个图形中,圆柱体的俯视图是()
圆柱体
5.(3分)假定按同一种方式掷两枚均匀硬币,如果第一枚出现正面朝上,第二枚出现反面
朝上,就记为(正,反),如此类推,出现(正,正)的概率是()
6.(3分)下列长度的三条线段能首尾相接构成三角形的是()
A.\cm»2cm»3cmB.3cm,4cm,5cmC.4cm,5cm,10cmD.6c/n,9cm,
2cm
7.(3分)如图是反比例函数y的图象,点AQ,y)是反比例函数图象上任意一点,过点A
X
作AB_L%轴于点8,连接。4,则AAO8的面积是()
22
8.(3分)在直角坐标系中,已知点4(|,附,点BQ,,〃)是直线丁="+伙左<0)上的
两点,则相,〃的大小关系是()
A.m<nB.m>nC.trL.nD."射〃
9.(3分)如图,OO是等边AABC的外接圆,若AB=3,则OO的半径是()
5
c.GD.
2
12
——x>——X,
10.(3分)关于X的不等式组33有且只有三个整数解,则。的最大值是(
—x-1<—(a-2)
122
)
A.3B.4C.5D.6
二、填空题(本大题有8个小题,每小题3分,共24分)
11.(3分)因式分解:%2-4/=—.
12.(3分)若71=有意义,则x的取值范围是
14.(3分)分式方程色一-」=0的解是—.
x—2x
15.(3分)已知矩形的一边长为6c,〃?,一条对角线的长为10s,则矩形的面积为—cm2.
16.(3分)己知d-3x+l=0,贝i」3f-9x+5=.
17.(3分)如图,在等腰AABC中,ZA=120°,顶点8在nODE尸的边£>E上,已知4=40。,
则N2=
18.(3分)如图,在AABC中,点。在45边上,点E在AC边上,请添加一个条件
使/\ADE^AABC.
三、解答题(本大题有8个小题,第19〜25题每题8分,第26题10分,共66分.解答
应写出必要的文字说明、演算步骤或证明过程)
19.(8分)计算:g-2)°+(-')-2-2sin60°.
20.(8分)先化简,再从-1,0,1,6中选择一个合适的x值代入求值.
21.(8分)如图,在菱形438中,对角线AC,或)相交于点O,点E,尸在对角线双)
上,且跳;=。/,OE=OA.
求证:四边形AECF是正方形.
22.(8分)2021年秋季,全国义务教育学校实现课后服务全覆盖.为了促进学生课后服务
多样化,某校组织了第二课堂,分别设置了文艺类、体育类、阅读类、兴趣类四个社团(假
设该校要求人人参与社团,每人只能选择一个).为了了解学生喜爱哪种社团活动,学校做
了一次抽样调查,并绘制成如图1、图2所示的两幅不完整的统计图,请你根据统计图提供
的信息解答以下问题.
(1)求抽取参加调查的学生人数.
(2)将以上两幅不完整的统计图补充完整.
(3)若该校有1600人参加社团活动,试估计该校报兴趣类社团的学生人数.
23.(8分)2022年2月4日至20日冬季奥运会在北京举行.某商店特购进冬奥会纪念品“冰
墩墩”摆件和挂件共180个进行销售.已知“冰墩墩”摆件的进价为80元/个,“冰墩墩”
挂件的进价为50元/个.
(1)若购进“冰墩墩”摆件和挂件共花费了11400元,请分别求出购进“冰墩墩”摆件和
挂件的数量.
(2)该商店计划将“冰墩墩”摆件售价定为100元/个,“冰墩墩”挂件售价定为60元/个,
若购进的180个“冰墩墩”摆件和挂件全部售完,且至少盈利2900元,求购进的“冰墩墩”
挂件不能超过多少个?
24.(8分)如图,已知。C是OO的直径,点3为8延长线上一点,是OO的切线,
点A为切点,且A8=AC.
(1)求NACB的度数;
25.(8分)如图,一艘轮船从点A处以30切?//?的速度向正东方向航行,在A处测得灯塔C
在北偏东60。方向上,继续航行1/7到达8处,这时测得灯塔C在北偏东45。方向上,已知在
灯塔C的四周40加7内有暗礁,问这艘轮船继续向正东方向航行是否安全?并说明理由.(提
示:夜=1.414,73»1.732)
26.(10分)如图,已知直线y=2x+2与抛物线y="2+fcv+c相交于A,8两点,点A在
x轴上,点3在y轴上,点C(3,0)在抛物线上.
y=2r+2
y=2r+2y=2r+2
(1)求该抛物线的表达式.
(2)正方形OP/迫的顶点O为直角坐标系原点,顶点P在线段OC上,顶点E在y轴正半
轴上,若A4O8与ADPC全等,求点P的坐标.
(3)在条件(2)下,点。是线段8上的动点(点。不与点。重合),将沿PQ所
在的直线翻折得到APQ。,连接C。,求线段8'长度的最小值.
2022年湖南省邵阳市中考数学试卷
答案与试题解析
一、选择题(本大题有10个小题,每小题3分,共30分.在每小题给出的四个选项中,
只有一项是符合题目要求的)
1.(3分)-2022的绝对值是()
A.」一B.-2022C.2022D.—―
20222022
【分析】直接利用绝对值的性质分析得出答案.
解:-2022的绝对值是2022.
故选:C.
2.(3分)下列四种图形中,对称轴条数最多的是()
A.等边三角形B.圆C.长方形D.正方形
【分析】根据轴对称图形的意义:一个图形沿一条直线对折,直线两旁的部分能够完全重合,
那么这个图形就是轴对称图形,这条直线就是这个图形的一条对称轴,由此分析各图形的对
称轴条数即可求解.
解:A.等边三角形是轴对称图形,它有3条对称轴;
B.圆是轴对称图形,有无数条条对称轴;
C.长方形是轴对称图形,有2条对称轴;
D.正方形是轴对称图形,有.4条对称轴;
故对称轴条数最多的图形是圆.
故选:B.
3.(3分)5月29日腾讯新闻报道,2022年第一季度,湖南全省地区生产总值约为11000
亿元,11000亿用科学记数法可表示为“xlOH则〃的值是()
A.0.11B.1.1C.11D.11000
【分析】科学记数法的表示形式为axlO"的形式,其中1,,|a|<10,〃为整数.确定〃的值
时,要看把原数变成“时,小数点移动了多少位,”的绝对值与小数点移动的位数相同.当
原数绝对值..10时,”是正整数;当原数的绝对值<1时,〃是负整数.
解:11000亿=1100000000000=1.1Xi。1?,
.'.£2=1.1,
故选:B.
4.(3分)下列四个图形中,圆柱体的俯视图是()
圆柱体
C.
【分析】根据俯视图是从物体的上面看得到的视图解答.
解:从圆柱体的上面看到是视图是圆,
则圆柱体的俯视图是圆,
故选:D.
5.(3分)假定按同一种方式掷两枚均匀硬币,如果第一枚出现正面朝上,第二枚出现反面
朝上,就记为(正,反),如此类推,出现(正,正)的概率是()
A.1B.-D.
44
【分析】画树状图,共有4种等可能的结果,其中出现(正,正)的结果有1种,再由概率
公式求解即可.
解:画树状图如下:
正
z\
正反正反
共有4种等可能的结果,其中出现(正,正)的结果有1种,
出现(正,正)的概率为工,
4
故选:D.
6.(3分)下列长度的三条线段能首尾相接构成三角形的是()
A.Ian,2cm,3crnB.3cm»4cm,5cmC.4cm,5cm,10cmD.6cm>9cm,
2cm
【分析】根据在三角形中任意两边之和大于第三边,任意两边之差小于第三边.即可求解.
解:根据三角形的三边关系,得:
A、1+2=3>不能构成三角形;
B、3+4>5)能构成三角形;
C、4+5<10,不能构成三角形;
D,2+6<9,不能构成三角形.
故选:B.
7.(3分)如图是反比例函数y的图象,点A(x,y)是反比例函数图象上任意一点,过点A
X
作轴于点5,连接。4,则AAO8的面积是()
A.1B.-C.2D.-
22
【分析】由反比例函数的几何意义可知,左=1,也就是A4O8的面积的2倍是1,求出AAO8
的面积是
2
解:,/A(x,y),
/.OB=x,AB=y,
・「A为反比例函数y=,图象上一点,
x
丁.SMBO=34808=5孙=gx]=Q,
故选:B.
8.(3分)在直角坐标系中,已知点⑼,点8(孝,〃)是直线旷=履+/人<0)上的
两点,则相,〃的大小关系是()
A.tn<nB.m>nC.m,.nD.图,〃
【分析1根据A>0可知函数y随着X增大而减小,再根|>日即可比较加和”的大小.
解:点4(|,〃?),点8(1,〃)是直线),="+b上的两点,且左<0,
.•.一次函数y随着x增大而减小,
..3币
.—>,
22
:.m<n,
故选:A.
9.(3分)如图,OO是等边AABC的外接圆,若AB=3,则G)O的半径是()
【分析】连接03,过点O作OE_L3C,结合三角形外心和垂径定理分析求解.
解:连接03,过点。作OE_LBC,
OO是等边AABC的外接圆,
.•.08平分NABC,
:.NOBE=30°,
又・.・OE工BC,
113
:.BE=-BC=-AB=~,
222
在R3OBE中,cos300=—,
OB
3
...--2-----f
OB2
解得:OB=y/3,
故选:c.
12
——X>——X,
10.(3分)关于x的不等式组33有且只有三个整数解,则〃的最大值是(
—x-1<(a—2)
[22
)
A.3B.4C.5D.6
【分析】分别求出不等式组中两不等式的解集,找出两解集的公共部分表示出不等式组的解
集,根据解集有旦只有三个整数解,确定出。的范围即可.
12
——x>—-XD
解:33
1
—X
.2
由①得:X>1,
由②得:X<a,
解得:\<x<a
・・•不等式组有且仅有三个整数解,即2,3,4,
,4<④5,
的最大值是5,
故选:C.
二、填空题(本大题有8个小题,每小题3分,共24分)
11.(3分)因式分解:x2-4y2=_(x+2y)(x-2y)
【分析】直接运用平方差公式进行因式分解.
22
解:x-4y=(x+2y)(x-2y).
12.(3分)若下■有意义,则x的取值范围是x>2.
^/^2——
【分析】先根据二次根式及分式有意义的条件列出x的不等式组,求出犬的取值范围即可.
解:*/——有意义,
Vx-2
x—2..0
解得x>0.
x—2w0
故x>2.
13.(3分)某班50名同学的身高(单位:cm)如下表所示:
身高155156157158159160161162163164165166167168
人数351221043126812
则该班同学的身高的众数为_160c?"_.
【分析】一组数据中出现次数最多的数据叫做众数,结合表格信息即可得出答案.
解:身高160的人数最多,
故该班同学的身高的众数为160c”?.
故160cm.
14.(3分)分式方程色一一」=0的解是x=-3.
x-2x~~
【分析】依据解分式方程的步骤:①去分母;②求出整式方程的解;③检验;④得出结论.
解:去分母,得:5x—3(x—2)=0,
整理,得:2x+6=0»
解得:x=-3f
经检验:尤=-3是原分式方程的解,
故x=—3.
15.(3分)己知矩形的一边长为6cm,一条对角线的长为105,则矩形的面积为48而.
【分析】利用勾股定理列式求出另一边长,然后根据矩形的面积公式列式进行计算即可得解.
解:•・•长方形的一条对角线的长为10。%,一边长为
另一边长=V102-62=8cm,
.,.它的面积为8x6=48c/n2.
故48.
16.(3分)己知/一3犬+1=0,贝IJ31—9x+5=2
【分析】原式前两项提取3变形后,把己知等式变形代入计算即可求出值.
解:vx2-3x+l=0,
/.x2-3x=-l,
则原式=3(f—3x)+5
=-3+5
=2.
故2.
17.(3分)如图,在等腰AABC中,ZA=120°,顶点、B在口ODEF的边DE上,已知Nl=40。,
【分析】根据等腰三角形的性质和平行四边形的性质解答即可.
解:・・•等腰AABC中,ZA=120°,
.\ZABC=30°,
vZl=40°,
/.ZABE=Z1+ZABC=70°,
•/四边形OD所是平行四边形,
:.OFI/DE,
.•.N2=180。一ZABE=180°-70°=110°,
故110。.
18.(3分)如图,在AABC中,点。在边上,点£在AC边上,请添加一个条件
N4Z把=Nfi或NAED=NC或叱=白?(答案不唯一),使AAD石。八钻。.
一~ABAC
A
B
【分析】要使两三角形相似,已知一组角相等,则再添加一组角或公共角的两边对应成比例
即可.
解:vZA=ZA,
AnAF
.•.当或NAE£)=NC或——=——时,MDE^AABC,
ABAC
故Z4Z)E=NB或NAED=NC或丝=空(答案不唯一).
ABAC
三、解答题(本大题有8个小题,第19〜25题每题8分,第26题10分,共66分.解答
应写出必要的文字说明、演算步骤或证明过程)
19.(8分)计算:U-2)(,+(--r2-2sin60°.
2
【分析】直接利用特殊角的三角函数值以及零指数鼎的性质、负整数指数基的性质分别化简,
进而得出答案.
解:原式=l+4-2x史
2
=1+4->/3
=5—x/i-
20.(8分)先化简,再从-1,0,1,G中选择一个合适的x值代入求值.
(―+-^—)--.
x+1%2—1X—1
【分析】先计算分式的混合运算进行化简,先算小括号里面的,然后算括号外面的,最后根
据分式成立的条件确定X的取值,代入求值即可.
解:原式=高言.一
1
X+1
又,0,1,
1x/3-l
.•.X可以取G,此时原式=
G+112
21.(8分)如图,在菱形ABCO中,对角线AC,B£>相交于点。,点E,尸在对角线比»
上,且BEuDF,OE=OA.
求证:四边形AECF是正方形.
【分析】证明AC与互相垂直平分便可根据菱形的判定定理得出结论
证明:•.♦四边形ABCD是菱形,
..ACA.BD,OA=OC,OB=OD,
•:BE=DF,
:.OE=OF,
二四边形血尸是菱形;
:.OE=OF,OA=OC,
-.-OE=OA=OF,
;.OE=OF=OA=OC,BPEF=AC,
菱形AEC尸是正方形.
22.(8分)2021年秋季,全国义务教育学校实现课后服务全覆盖.为了促进学生课后服务
多样化,某校组织了第二课堂,分别设置了文艺类、体育类、阅读类、兴趣类四个社团(假
设该校要求人人参与社团,每人只能选择一个).为了了解学生喜爱哪种社团活动,学校做
了一次抽样调查,并绘制成如图1、图2所示的两幅不完整的统计图,请你根据统计图提供
的信息解答以下问题.
(1)求抽取参加调查的学生人数.
(2)将以上两幅不完整的统计图补充完整.
(3)若该校有1600人参加社团活动,试估计该校报兴趣类社团的学生人数.
【分析】(1)根据兴趣类的人数和所占的百分比,可以求得此次调查的人数;
(2)根据(1)中的计算和扇形统计图中的数据,可以计算出体育类的人数,从而可以将条
形统计图补充完整;
(3)根据条形统计图中的数据,可以计算出喜欢兴趣类社团的学生有多少人.
解:(1)54-12.5%=40(人),
答:此次共调查了40人;
(2)体育类有40x25%=10(人),
文艺类社团的人数所占百分比:15-40x100%=37.5%,
阅读类社团的人数所占百分比:10-40xl00%=25%,
将条形统计图补充完整如下:
(3)1600x12.5%=200(人),
答:估计喜欢兴趣类社团的学生有200人.
23.(8分)2022年2月4日至20日冬季奥运会在北京举行.某商店特购进冬奥会纪念品“冰
墩墩”摆件和挂件共180个进行销售.已知“冰墩墩”摆件的进价为80元/个,“冰墩墩”
挂件的进价为50元/个.
(1)若购进“冰墩墩”摆件和挂件共花费了1I400X;,请分别求出购进“冰墩墩”摆件和
挂件的数量.
(2)该商店计划将“冰墩墩”摆件售价定为100元/个,''冰墩墩”挂件售价定为60元/个,
若购进的180个“冰墩墩”摆件和挂件全部售完,且至少盈利2900元,求购进的“冰墩墩”
挂件不能超过多少个?
【分析】(1)设购进“冰墩墩”摆件x个,“冰墩墩”挂件y个,利用进货总价=进货单价x
进货数量,结合购进“冰墩墩”摆件和挂件共100个且共花费了11400元,即可得出关于x,
y的二元一次方程组,解之即可得出结论;
(2)设购进“冰墩墩”挂件机个,则购进“冰墩墩”摆件(180-〃?)个,利用总利润=每个
的销售利润x销售数量(购进数量),即可得出关于"的一元一次不等式,解之取其中的最
大值即可得出结论.
解:(1)设购进“冰墩墩”摆件x个,“冰墩墩”挂件y个,
x+y=180
依题意得:
80x+50y=11400
答:购进“冰墩墩”摆件80个,“冰墩墩”挂件100个.
(2)设购进“冰墩墩”挂件m个,则购进“冰墩墩”摆件(180-㈤个,
依题意得:(60-50)〃?+(100-80)(180-〃?)..2900,
解得:m,,70.
答:购进的“冰墩墩”挂件不能超过70个.
24.(8分)如图,已知。C是OO的直径,点8为8延长线上一点,是OO的切线,
点A为切点,且AB=AC.
(1)求Z4C8的度数;
(2)若。O的半径为3,求圆弧4c的长.
【分析】(1)连接。4,利用切线的性质可得440=90。,利用等腰三角形的性质可得
NB=NACB=NO4C,根据三角形内角和定理列方程求解;
(2)先求得44OC的度数,然后根据弧长公式代入求解.
解:(1)连接OA,
•.•45是0O的切线,点A为切点,
..ZR4O=90°,
又•.AB=AC,OA=OC,
:.ZB=ZACB=ZOAC,
设NACB=x°,则在AABC中,
X°+X°+A°+90°=180°,
解得:x=30,
.•.NAC8的度数为30。;
(2)-.-ZACB=Zft4C=30°,
.-.ZAOC=120°.
.120^x3_
J=-----------=2%・
4c180
25.(8分)如图,一艘轮船从点A处以30k"///的速度向正东方向航行,在A处测得灯塔C
在北偏东60。方向上,继续航行1〃到达3处,这时测得灯塔C在北偏东45。方向上,已知在
灯塔。的四周40k〃内有暗礁,问这艘轮船继续向正东方向航行是否安全?并说明理由.(提
【分析】过点C作C。垂直AB,利用特殊角的三角函数值求得8的长度,从而根据无理
数的估算作出判断.
解:安全,理由如下:
AB=30x1=30km,
在RtACBD中,设CD=BD=xkm,则AO=(x+30)5?,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025幼儿园采购合同协议书
- 地铁隧道维修加固合同
- 酒店绿化维修合同
- 化工企业实验室研究员聘用合同
- 2024房地产买卖协议保密协议合同范本
- 2024年网络安全与合规服务合同
- 服装品牌美发师聘用合同
- 2025的非诉讼委托代理合同
- 电力维护塔机租赁合同
- 房地产项目律师服务聘用合同
- 英美文学导论21级学习通超星期末考试答案章节答案2024年
- 钻井队安全管理年终工作总结
- 腰椎感染护理查房
- 2024秋期国家开放大学专科《法律咨询与调解》一平台在线形考(形考任务1至4)试题及答案
- 七年级全册语文古诗词
- 销售业务拓展外包协议模板2024版版
- 体育大单元教学计划(18课时)
- 2024软件维护合同范本
- 期末测评-2024-2025学年统编版语文三年级上册
- 云南省师范大学附属中学2025届高二生物第一学期期末联考试题含解析
- 人教部编版初中八年级生物上册知识梳理
评论
0/150
提交评论