江苏省扬州市邗江区2023-2024学年高二上学期期中调研考试数学试题(解析版)_第1页
江苏省扬州市邗江区2023-2024学年高二上学期期中调研考试数学试题(解析版)_第2页
江苏省扬州市邗江区2023-2024学年高二上学期期中调研考试数学试题(解析版)_第3页
江苏省扬州市邗江区2023-2024学年高二上学期期中调研考试数学试题(解析版)_第4页
江苏省扬州市邗江区2023-2024学年高二上学期期中调研考试数学试题(解析版)_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

PAGEPAGE1江苏省扬州市邗江区2023-2024学年高二上学期期中调研考试数学试题一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.经过点且倾斜角为的直线的方程是()A. B.C. D.【答案】B【解析】由倾斜角为知,直线的斜率,因此,其直线方程为,即故选:B2.已知点在直线上,则的最小值为()A.1 B.2 C.3 D.4【答案】B【解析】就是到原点距离,到原点距离的最小值为则的最小值为2,故选:B.3.如果方程表示焦点在轴上的椭圆,则实数的取值范围是()A. B. C.或 D.且【答案】D【解析】因为方程表示焦点在轴上的椭圆,则,解得且.故选:D.4.已知是抛物线:的焦点,点在上且,则的坐标为()A. B. C. D.【答案】A【解析】因为是抛物线:的焦点,所以,又,由抛物线的定义可知,解得,所以.故选:A5.过直线上的点P作圆的两条切线,,当直线,关于直线对称时,两切点间的距离为()A.1 B.2 C. D.【答案】D【解析】依题意,设两切点分别为、,并连接交于点,作出示意图:当直线,关于直线对称时,则两条直线,与直线的夹角相等,且与直线互相垂直,的长为圆心到直线的距离,即,又圆的半径,在中,,故,结合垂径定理得,即两切点间的距离为,故选:D.6.为落实“二十大”不断实现人民对美好生活的向往,某小区在园区中心建立一座景观喷泉.如图所示,喷头装在管柱OA的顶端A处,喷出的水流在各个方向上呈抛物线状.现要求水流最高点B离地面4m,点B到管柱OA所在直线的距离为2m,且水流落在地面上以O为圆心,6m为半径的圆内,则管柱OA的高度为()A.2m B.3m C.2.5m D.1.5m【答案】B【解析】如图所示,建立平面直角坐标系,由题意知,水流的轨迹为一开口向下的抛物线,设抛物线的方程为,因为点,所以,解得,所以抛物线方程为,点在抛物线上,所以,解得,所以,所以管柱的高度为.故选:B.7.瑞士数学家欧拉在《三角形的几何学》一书中提出:任意三角形的外心、重心、垂心在同一条直线上.这条直线被称为欧拉线.已知的顶点,,,若直线l:与的欧拉线平行,则实数a的值为()A.-2 B.-1 C.-1或3 D.3【答案】B【解析】由的顶点,,知,重心为,即,又三角形为直角三角形,所以外心为斜边中点,即,所以可得的欧拉线方程,即,因为与平行,所以,解得,故选:B8.已知椭圆的左、右焦点分别是,点是椭圆上位于第一象限的一点,且与轴平行,直线与的另一个交点为,若,则的离心率为()A. B. C. D.【答案】B【解析】由令,得,由于与轴平行,且在第一象限,所以.由于,所以,即,将点坐标代入椭圆的方程得,,,所以离心率.故选:B二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.过定点(2,3)且在两坐标轴上截距的绝对值相等的直线为()A. B.C. D.【答案】ABC【解析】由题意,直线不与坐标轴垂直,设所求的直线方程为,当时,得横截距,当时,得纵截距,因为过点的直线在两坐标轴上截距的绝对值相等,所以,所以或,所以,或或,所以直线的方程为或或.故选:ABC.10.已知,为两个不相等非零实数,则方程,与所表示的曲线不可能是()A. B. C. D.【答案】ABD【解析】变形得到,A选项,双曲线交点在轴上,故,此时应该经过第一,二,四象限,A不可能;B选项,椭圆焦点在轴上,故,此时经过第一,二,三象限,B不可能;C选项,双曲线交点在轴上,故,此时应该经过第一,三,四象限,C可能;D选项,椭圆焦点在轴上,故,此时经过第一,二,三象限,D不可能;故选:ABD11.已知经过点的圆C的圆心坐标为(t为整数),且与直线l:相切,直线m:与圆C相交于A、B两点,下列说法正确的是()A.圆C的标准方程为B.若,则实数a的值为C.若,则直线m的方程为或D.弦AB的中点M的轨迹方程为【答案】BC【解析】对于A,设圆C的半径为r,由题意可得圆C的方程为(t为整数),根据点是圆C上的点,且圆C与直线l:相切,得,解得,或(舍去),则圆C的标准方程为,故A错误;对于B,由选项A知圆C的标准方程为,圆心,点在圆C上,且,线段AB为圆C的直径,直线m:与圆C相交于A、B两点,圆心在直线m上,,解得,故B正确;对于C,由选项A知圆C的半径为2,圆心,则圆心C到直线m的距离,,即,解得,,整理得,解得或,则直线m的方程为或,故C正确;对于D,直线m的方程可化为,过定点,由圆的性质可得,点M的轨迹是以线段CN为直径的圆,则此圆圆心为线段CN的中点,其坐标为,半径为,则该圆的方程为,由,得两圆的交点坐标为与,故弦AB的中点M的轨迹方程为,,故D错误;故选:BC.12.已知O为坐标原点,过抛物线焦点F的直线与C交于A,B两点,其中A在第一象限,点,若,则()A.直线的斜率为 B.C. D.【答案】ACD【解析】对于A,易得,由可得点在的垂直平分线上,则点横坐标为,代入抛物线可得,则,则直线的斜率为,A正确;对于B,由斜率为可得直线的方程为,联立抛物线方程得,设,则,则,代入抛物线得,解得,则,则,B错误;对于C,由抛物线定义知:,C正确;对于D,,则为钝角,又,则为钝角,又,则,D正确.故选:ACD.三、填空题:本题共4小题,每小题5分,共20分.13.若直线的斜率为,倾斜角为且,则的取值范围是_____.【答案】【解析】,且,或,即的取值范围是.故答案为:.14.已知双曲线=1(a>0,b>0)的渐近线方程为y=±x,则它的离心率为________.【答案】2【解析】由题意,得e====2.15.由曲线围成的图形的面积为______.【答案】【解析】将或代入方程,方程不发生改变,故曲线关于轴,轴对称,因此只需求出第一象限的面积即可,当,时,曲线可化为:,表示的图形为以为圆心,半径为的一个半圆,则第一象限围成的面积为,故曲线围成的图形的面积为.故答案为:.16.动点分别与两定点,连线的斜率的乘积为,设点的轨迹为曲线,已知,,则的取值范围为____________.【答案】【解析】设,,则,,由已知可得,,即,整理可得,.所以,点的轨迹方程为().所以,,,,所以.则为椭圆的左焦点,设右焦点为,根据椭圆的定义有,所以,所以,.①当时,根据三边关系可知有,当且仅当三点共线时,等号成立,即位于图中点时,有最大值为,所以,;②当时,根据三边关系可知有,所以,当且仅当三点共线时,等号成立,即位于图中点时,有最小值为,所以,.综上所述,.故答案为:.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.已知的三个顶点是,,.求:(1)边上的中线所在直线方程;(2)边上的高所在直线方程.解:(1)由题知的中点,所以直线的斜率,则边上的中线所在直线的方程为,化简得.(2)由题意得直线AC的斜率,且,所以.则边上的高所在直线的方程为,化简得.18.求适合下列条件的圆锥曲线的标准方程:(1)求椭圆的标准方程:以点,为焦点,经过点.(2)已知抛物线的焦点为,点在抛物线上,且,求抛物线的标准方程.(3)求双曲线的标准方程:经过点,.解:(1)设椭圆的标准方程为,焦距为.由题意有,,,所以,,故椭圆的标准方程为.(2)由抛物线的定义可得,∴,解得,故抛物线的标准方程为.(3)设所求双曲线方程,则,解得,所以双曲线方程为.19.已知抛物线C:焦点为F,过F的直线l与抛物线相交于A,B两点,(1)当时,求直线l的方程;(2)求证:以AB为直径的圆与抛物线C的准线相切.解:(1)解法1:由题意,可得,,当l斜率不存在时,l为,由得,故,与题意不符.当直线l斜率存在时,设,∴,设则,根据抛物线的定义可得,,则,解得.∴直线l的方程为或.解法2:由题意,可得,∵直线l与抛物线相交于A,B,∴l斜率存在时,斜率不为0,故可设,则,设则∴,解得.则直线l的方程为或.(2)几何法:取AB的中点M,则M为以AB为直径的圆的圆心,设,过M作MN⊥准线a于N,过A作⊥准线a于,过B作⊥准线a于,根据梯形的性质和抛物线的定义可得,即得证.代数法:设,弦AB的中点为M,则M为以AB为直径的圆的圆心,其横坐标为,∵直线l与抛物线相交于A,B,∴l斜率存在时,斜率不为0,故可设,则,则,则M到准线的距离为.又,故,即以AB为直径的圆与抛物线C的准线相切.20.已知圆,圆(1)若圆、相切,求实数的值;(2)若圆与直线相交于、两点,且,求的值.解:(1)已知圆变形为,圆的圆心为,半径,圆的圆心,半径为,圆心距,当两圆外切时,有,即,解得,当两圆内切时,有,即,解得,故m的取值为或(2)因为圆与直线相交于、N两点,且,而圆心到直线的距离,有,即,解得:或.21.已知双曲线的焦点到渐近线的距离为1,且点在该双曲线上.直线交C于P,Q两点,直线的斜率之和为(1)求该双曲线方程;(2)求的斜率;解:(1)双曲线的渐近线是,即,根据对称性,不妨取右焦点,则焦点到渐近线的距离为:,所以,双曲线C的方程为.将点A代入双曲线方程得,得:,故双曲线方程为.(2)解法一:由题意可知直线l的斜率存在,设,设,,则联立直线与双曲线得:,则,又,所以,.由韦达定理可得,,所以,化简得:,故,整理可得,解得或.若,即时,,即过A点,显然直线l不过A点,故l的斜率解法二:设直线PA方程:,将代入双曲线,化简得:,且有,.由韦达定理可得,所以有,,.以,可得.所以,.22.已知椭圆的长轴长为4,离心率为.(1)求椭圆的方程;(2)若过点的直线与椭圆相交于两点,为原点,求面积的最大值.解:(1)由题意得,解得,故,故椭圆方程为;(2)法1,由题意,当直线AB的斜率

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论