版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届云南师大附中呈贡校区八年级数学第一学期期末教学质量检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.下列代数式中,是分式的为()A. B. C. D.2.如图,在中,,,则的度数为()A. B. C. D.3.若代数式有意义,则实数x的取值范围是A. B. C. D.且4.在平面直角坐标系xOy中,A(1,3),B(5,1),点M在x轴上,当MA+MB取得最小值时,点M的坐标为()A.(5,0) B.(4,0) C.(1,0) D.(0,4)5.下列式子是分式的是()A. B. C. D.6.如图,已知△ABC中,∠A=75°,则∠BDE+∠DEC=()A.335° B.135° C.255° D.150°7.估计5﹣的值应在()A.5和6之间 B.6和7之间 C.7和8之间 D.8和9之间8.如图是用4个全等的直角三角形与1个小正方形镶嵌而成的正方形图案,已知大正方形面积为49,小正方形面积为4,若用,表示直角三角形的两直角边(),下列四个说法:①,②,③,④.其中说法正确的是()A.①② B.①②③ C.①②④ D.①②③④9.九年级二班45名同学在学校举行的“爱心涌动校园”募捐活动中捐款情况如下表捐款数(元)
10
20
30
40
50
捐款人数(人)
8
17
16
2
2
则全班捐款的45个数据,下列错误的()A.中位数是30元 B.众数是20元 C.平均数是24元 D.极差是40元10.要使分式有意义,x应满足的条件是()A.x>3 B.x=3 C.x<3 D.x≠3二、填空题(每小题3分,共24分)11.小亮是位足球爱好者,某次在练习罚点球时,他在10分钟之间罚球20次,共罚进15次,则小亮点罚进的频数是____________.频率是____________.12.某种型号汽车每行驶100km耗油10L,其油箱容量为40L.为了有效延长汽车使用寿命,厂家建议每次加油时邮箱内剩余油量不低于油箱容量的,按此建议,一辆加满油的该型号汽车最多行驶的路程是_____km.13.直线沿轴向右平移个单位长度后与两坐标轴所围成的三角形面积等于______________.14.使分式有意义的x的取值范围是_____.15.已知,那么______.16.已知,则_____________________;17.等腰三角形一腰上的高与另一腰的夹角为40°,则其顶角的度数为_________.18.点(2+a,3)关于y轴对称的点的坐标是(﹣4,2﹣b),则ab=_____.三、解答题(共66分)19.(10分)四边形ABCD中,∠ABC+∠D=180°,AC平分∠BAD,CE⊥AB于E,CF⊥AD于F.求证:(1)△CBE≌△CDF;(2)AB+DF=AF.20.(6分)某校运动会需购买A,B两种奖品,若购买A种奖品3件和B种奖品2件,共需60元;若购买A种奖品5件和B种奖品3件,共需95元.(1)求A、B两种奖品的单价各是多少元?(2)学校计划购买A、B两种奖品共100件,购买费用不超过1150元,且A种奖品的数量不大于B种奖品数量的3倍,设购买A种奖品m件,购买费用为W元,写出W(元)与m(件)之间的函数关系式.求出自变量m的取值范围,并确定最少费用W的值.21.(6分)已知:在△ABC中,∠BAC=90°,AB=AC,点D为射线BC上一动点,连结AD,以AD为一边且在AD的右侧作正方形ADEF.(1)当点D在线段BC上时(与点B,C不重合),如图1,求证:CF=BD;(2)当点D运动到线段BC的延长线上时,如图2,第(1)问中的结论是否仍然成立,并说明理由.22.(8分)在平面直角坐标系中,△ABC的位置如图所示(每个小方格都是边长为1个单位长度的正方形).(1)将△ABC沿x轴方向向左平移6个单位长度,画出平移后得到的△A1B1C1;(2)将△ABC绕着点A顺时针旋转90°,画出旋转后得到的△AB2C2;(3)直接写出点B2,C2的坐标.23.(8分)先化简,再求值:(m+2),其中m=﹣1.24.(8分)已知一个多边形的内角和,求这个多边形的边数.25.(10分)如图,将长方形ABCD沿EF折叠,使点D与点B重合.(1)若∠AEB=40°,求∠BFE的度数;(2)若AB=6,AD=18,求CF的长.26.(10分)某茶叶经销商以每千克元的价格购进一批宁波白茶鲜茶叶加工后出售,已知加工过程中质量损耗了,该商户对该茶叶试销期间,销售单价不低于成本单价,且每千克获利不得高于成本单价的,经试销发现,每天的销售量(千克)与销售单价(元/千克)符合一次函数,且时,;时,.(1)求一次函数的表达式.(2)若该商户每天获得利润为元,试求出销售单价的值.
参考答案一、选择题(每小题3分,共30分)1、B【解析】判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.【详解】这个式子分母中含有字母,因此是分式.其它式子分母中均不含有字母,是整式,而不是分式.故选:B.【点睛】本题考查了分式的概念,分式与整式的区别主要在于:分母中是否含有未知数.2、B【分析】根据等腰三角形两底角相等求出∠B=∠ADB,根据等边对等角可得∠C=∠CAD,然后利用三角形内角和定理列式进行计算即可解答.【详解】∵AB=AD,∠BAD=40°∴∠B=(180°-∠BAD)=(180°-40°)=70°∵AD=DC∴∠C=CAD在△ABC中,∠BAC+∠B+∠C=180°即40°+∠C+∠C+70°=180°解得:∠C=35°故选:B【点睛】本题主要考查等腰三角形的性质:等角三角形两底角相等、等边对等角,掌握等腰三角形的性质是解题的关键.3、D【解析】根据二次根式被开方数必须是非负数和分式分母不为0的条件,要使在实数范围内有意义,必须且x≠1.故选D.4、B【分析】根据对称性,作点B关于x轴的对称点B′,连接AB′与x轴交于点M,根据两点之间线段最短,后求出的解析式即可得结论.【详解】解:如图所示:作点B关于x轴的对称点B′,连接AB′交x轴于点M,此时MA+MB=MA+MB′=AB′,根据两点之间线段最短,因为:B(5,1),所以:设直线为把代入函数解析式:解得:所以一次函数为:,所以点M的坐标为(4,0)故选:B.【点睛】本题考查了轴对称-最短路线问题,解决本题的关键是掌握对称性质.5、B【解析】解:A、C、D是整式,B是分式.故选B.6、C【分析】先由三角形内角和定理得出∠B+∠C=180°-∠A=105°,再根据四边形内角和定理即可求出∠BDE+∠DEC=360°-105°=255°.【详解】:∵∠A+∠B+∠C=180°,∠A=75°,∴∠B+∠C=180°-∠A=105°,∵∠BDE+∠DEC+∠B+∠C=360°,∴∠BDE+∠DEC=360°-105°=255°;故答案为:C.【点睛】本题考查了三角形、四边形内角和定理,掌握n边形内角和为(n-2)•180°(n≥3且n为整数)是解题的关键.7、C【分析】先化简二次根式,合并后,再根据无理数的估计解答即可.【详解】5﹣=,∵49<54<64,∴7<<8,∴5﹣的值应在7和8之间,故选C.【点睛】本题考查了估算无理数的大小,解决本题的关键是估算出无理数的大小.8、B【详解】可设大正方形边长为a,小正方形边长为b,所以据题意可得a2=49,b2=4;根据直角三角形勾股定理得a2=x2+y2,所以x2+y2=49,式①正确;因为是四个全等三角形,所以有x=y+2,所以x-y=2,式②正确;根据三角形面积公式可得S△=xy/2,而大正方形的面积也等于四个三角形面积加上小正方形的面积,所以,化简得2xy+4=49,式③正确;而据式④和式②得2x=11,x=5.5,y=3.5,将x,y代入式①或③都不正确,因而式④不正确.综上所述,这一题的正确答案为B.9、A【解析】经计算平均数是24元,众数是20元,中位数是20元,极差是40元.所以A选项错误.10、D【分析】本题主要考查分式有意义的条件:分母不能为1.【详解】∵x-3≠1,∴x≠3,故选:D.【点睛】本题考查的是分式有意义的条件,当分母不为1时,分式有意义.二、填空题(每小题3分,共24分)11、150.75【解析】根据频数的定义,知小亮点球罚进的频数为15,罚球的总数为20,根据频率=频数÷总数可得频率为=0.75.故答案为15;0.75.12、1.【分析】设行驶xkm,由油箱内剩余油量不低于油箱容量的,列出不等式,即可求解.【详解】设该型号汽车行驶的路程是xkm,∵油箱内剩余油量不低于油箱容量的,∴﹣x+40≥40×,解得:x≤1,答:该辆汽车最多行驶的路程是1km,故答案为:1.【点睛】本题主要考查一元一次不等式的实际应用,找出不等量关系,列出一元一次不等式,是解题的关键.13、12.25【分析】根据“平移k不变,b值加减”可以求得新直线方程;根据新直线方程可以求得它与坐标轴的交点坐标,所以由三角形的面积公式可以求得该直线与两坐标轴围成的三角形的面积.【详解】解:平移后解析式为:当x=0时,,当y=0时,,∴平移后得到的直线与两坐标轴围成的三角形的面积为:故答案是:.【点睛】本题考查了一次函数图象与几何变换.直线平移变换的规律:上下移动,上加下减;左右移动,左加右减,掌握其中变与不变的规律是解决直线平移变换的关键.14、x≠﹣1.【分析】直接利用分式有意义则分母不为零进而得出答案.【详解】解:∵分式有意义,∴x+1≠0,故x≠﹣1.故答案为:x≠﹣1.【点睛】本题主要考查分式有意义的条件,掌握分式有意义的条件是解题的关键.15、1【分析】由完全平方公式变形,把两边同时平方,然后移项即可得到答案.【详解】解:∵,∴,∴,∴;故答案为:1.【点睛】本题考查了完全平方公式的运用,解题的关键是熟练掌握完全平方公式进行解题.16、7【解析】把已知条件平方,然后求出所要求式子的值.【详解】∵,∴,∴=9,∴=7.故答案为7.【点睛】此题考查分式的加减法,解题关键在于先平方.17、50°或130°【分析】分类讨论当三角形是等腰锐角三角形和等腰钝角三角形两种情况,画出图形并结合三角形的内角和定理及三角形外角的性质,即可求出顶角的大小.【详解】(1)当三角形是锐角三角形时,如下图.根据题意可知,∵三角形内角和是,∴在中,(2)当三角形是锐角三角形时,如下图.根据题意可知,同理,在中,∵是的外角,∴故答案为或【点睛】本题考察了等腰三角形性质和三角形外角的性质以及三角形内角和定理的运用,分类讨论该等腰三角形是等腰锐角三角形或等腰钝角三角形是本题的关键.18、.【分析】根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”列方程求出a、b的值,然后代入代数式进行计算即可得解.【详解】解:∵点(2+a,3)关于y轴对称的点的坐标是(-4,2-b),
∴2+a=4,2-b=3,
解得a=2,b=-1,所以,ab=2-1=,故答案为【点睛】本题考查了关于y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数.三、解答题(共66分)19、(1)证明见解析;(2)证明见解析.【解析】试题分析:(1)根据角平分线的性质可得到CE=CF,根据余角的性质可得到∠EBC=∠D,已知CE⊥AB,CF⊥AD,从而利用AAS即可判定△CBE≌△CDF.(2)已知EC=CF,AC=AC,则根据HL判定△ACE≌△ACF得AE=AF,最后证得AB+DF=AF即可.试题解析:证明:(1)∵AC平分∠BAD,CE⊥AB,CF⊥AD∴CE=CF∵∠ABC+∠D=180°,∠ABC+∠EBC=180°∴∠EBC=∠D在△CBE与△CDF中,,∴△CBE≌△CDF;(2)在Rt△ACE与Rt△ACF中,∴△ACE≌△ACF∴AE=AF∴AB+DF=AB+BE=AE=AF.20、(1)A奖品的单价是10元,B奖品的单价是15元;(2)当购买A种奖品1件,B种奖品25件时,费用W最小,最小为2元.【解析】试题分析:(1)设A奖品的单价是x元,B奖品的单价是y元,根据条件建立方程组求出其解即可;(2)根据总费用=两种奖品的费用之和表示出W与m的关系式,并有条件建立不等式组求出x的取值范围,由一次函数的性质就可以求出结论.试题解析:(1)设A奖品的单价是x元,B奖品的单价是y元,由题意,得,解得:.答:A奖品的单价是10元,B奖品的单价是15元;(2)由题意,得W=10m+15(100-m)=-5m+1500∴,解得:70≤m≤1.∵m是整数,∴m=70,71,72,73,74,1.∵W=-5m+1500,∴k=-5<0,∴W随m的增大而减小,∴m=1时,W最小=2.∴应买A种奖品1件,B种奖品25件,才能使总费用最少为2元.考点:1.一次函数的应用;2.二元一次方程组的应用;3.一元一次不等式组的应用.21、(1)见解析;(2)仍然成立,理由见解析【分析】(1)要证明CF=BD,只要证明△BAD≌△CAF即可,根据等腰三角形的性质和正方形的性质可以证明△BAD≌△CAF,从而可以证明结论成立;(2)首先判断CF=BD仍然成立,然后根据题目中的条件,同(1)中的证明方法一样,本题得以解决.【详解】(1)证明:∵四边形ADEF是正方形,∴AD=AF,∠DAF=90°,∴∠DAC+∠CAF=90°,∵∠BAC=90°,∴∠DAC+∠BAD=90°,∴∠BAD=∠CAF,在△BAD和△CAF中,,∴△BAD≌△CAF(SAS),∴BD=CF,即CF=BD;(2)当点D运动到线段BC的延长线上时,如图2,第(1)问中的结论仍然成立.理由:∵∠BAC=∠DAF=90°,∴∠BAC+∠CAD=∠DAF+∠CAD,∴∠BAD=∠CAF,在△BAD和△CAF中,,∴△BAD≌△CAF(SAS),∴BD=CF,即CF=BD.【点睛】本题考查了正方形的性质、等腰三角形的性质和全等三角形的判定与性质,此题难度适中,注意利用公共角转化角相等作为证明全等的条件.22、(1)答案见解析;(2)答案见解析;(3)点B2(4,-2),C2(1,-3).【解析】试题分析:(1)利用点平移的规律写出点A、B、C的对应点A1、B1、C1的坐标,然后描点即可得到△A1B1C1;(2)利用网格特点和旋转的性质画出点B、C的对应点B2、C2,从而得到△AB2C2,再写出点B2、C2的坐标.试题解析:解:(1)如图,△A1B1C1即为所求;(2)如图,△AB2C2即为所求,点B2(4,﹣2),C2(1,﹣3).23、﹣2m﹣6,﹣2.【分析】把m+2看成,先计算括号里面的,再算乘法,化简后代入求值.【详解】解:(m+2)=(),,=﹣2(m+3)=﹣2m﹣6,当m=﹣1时,原式=﹣2×(﹣1)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 商户入住商务合同范例
- 天津滨海汽车工程职业学院《地球物理场论I》2023-2024学年第一学期期末试卷
- 天府新区信息职业学院《装修工程概预算实训》2023-2024学年第一学期期末试卷
- 正常购买合同范例
- 广告大屏合同范例
- 汕尾锅炉陶瓷喷涂施工方案
- 欧式合同范例
- 凉皮供货协议合同范例
- 录音制作合同范例
- 《2 我向国旗敬个礼》教学实录-2024-2025学年道德与法治一年级上册统编版
- 酒店用品设备采购投标方案(技术方案)
- JCT908-2013 人造石的标准
- 员工职业生涯规划调查问卷
- 课程与教学论-全书要点(余文森版)-
- 万物之理-爱因斯坦之梦智慧树知到课后章节答案2023年下中国海洋大学
- UI设计·形考任务一
- 天津理工大学数据结构实验报告4
- 雷达原理与系统-雷达系统设计与实验
- 充电桩工程施工组织设计施工组织
- 起诉状(淘宝虚假交易)
- 论文《后疫情时代信息技术与幼儿园教育深度融合的策略研究》
评论
0/150
提交评论