




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
函数的单调性和奇偶性一.教学内容函数的单调性和奇偶性
二.重、难点重点:函数单调增、减区间的意义,应用定义判断函数的单调性,奇偶性。难点:证明函数的单调性
【典型例题】[例1]如果函数在上是减函数,求a的取值范围。解:对称轴,由得[例2]判断函数()在R上的单调性解:设、且则当时,当时,和中必有之一不为0(∵)∴当时,在上面讨论结合(1)和(2)有∴函数在R上是减函数[例3]已知函数,在R上是增函数,求证:在R上也是增函数。证:任取,且则因为在R上是增函数所以又∵在R上是增函数∴∴在R上是增函数结论:同增异减:与增减性相同(反),函数是增(减)函数。[例4]求函数的单调区间解:首先确定义域:∴在和两个区间上分别讨论任取、且则要确定此式的正负只要确定的正负即可这样,又需判断大于1还是小于1,由于的任意性。考虑到要将分为与(1)当时,∴为减函数(2)当,时,∴为增函数同理(3)当时,为减函数C.D.3.函数在,上都是增函数,则的取值范围()A.B.C.D.4.在上是增函数,则的增区间是()A.B.C.D.
二.填空题1.函数的递增区间是。2.若函数是R上的增函数,且对一切都成立,则实数a的取值范围是。3.已知,,则。4.若是奇函数,则函数,的图象关于对称。
三.解答题1.已知是偶函数,在上是增函数,那么在上是增函数,还是减函数?并加以证明。2.函数在上单调递增,求实数a的取值范围。3.定义在上的偶函数,当时,单调递减,若,求的取值范围。
【试题答案】一.1.C2.D3.D4.B
二.1.2.3.314.轴
三.1.设由于是偶函数,则,①由假设可知,且又已知在上是增函数,则②将①代入②得即故在上是减函数2.解:在上单调递增∴设则∴∵∴∴即3.解:∵为
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 婴儿交往能力的逐步培养试题及答案
- Unit1 Can I have some sweets(教学设计)-2024-2025学年外研版(三起)四年级上册
- 2024年人力资源管理时事试题及答案
- 光的干涉与衍射实验问题试题及答案
- 黑龙江生态工程职业学院《大学英语B(Ⅳ)》2023-2024学年第二学期期末试卷
- 黑龙江省双城市兆麟中学2025年高三下-第二次阶段性测试英语试题试卷含解析
- 黑龙江省哈尔滨市南岗区第三中学2025年高三4月质量调研(二模)考试化学试题含解析
- 黑龙江省哈尔滨市重点中学2025届高三第一次高考模拟考试数学试题含解析
- 黑龙江省绥化市青冈县一中2024-2025学年高三冲刺诊断考试生物试题试卷含解析
- 黑龙江省黑河市孙吴县2024-2025学年三下数学期末学业水平测试模拟试题含解析
- 黄金卷02(广州专用)-【赢在中考·黄金预测卷】2025年中考数学模拟卷(考试版)
- 2025-2030年班用帐篷项目投资价值分析报告
- 生物会考试题及答案
- 血管活性药物静脉输注护理解读
- (一模)赣州市2025年高三年级摸底考试地理试卷(含答案详解)
- PLC应用技术课件 任务20 S7-1200 PLC控制步进电机
- 2025至2030年中国合成闸瓦数据监测研究报告
- DeepSeek原理与效应+DeepSeek深度分析解读
- 2025年四级作文预测
- 拆除工程专项施工方案和技术措施
- 中职高教版(2023)语文职业模块-第五单元:走近大国工匠(一)展示国家工程-了解工匠贡献【课件】
评论
0/150
提交评论