版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
安徽省合肥市包河区48中学2023年八上数学期末达标检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.如图1,点F从菱形ABCD的顶点A出发,沿A→D→B以1cm/s的速度匀速运动到点B,图2是点F运动时,△FBC的面积y(cm2)随时间x(s)变化的关系图象,则a的值为()A. B.2 C. D.22.等腰三角形的两边长分别为3cm,6cm,则该三角形的周长为()A.12cm B.15cm C.12cm或15cm D.以上都不对3.如图,小方格都是边长为1的正方形,则△ABC中BC边上的高是()A.1.6 B.1.4 C.1.5 D.24.等腰三角形的周长为,其中一边长为,则该等腰三角形的腰长为()A. B. C.或 D.或5.如图,分别用火柴棍连续搭建等边三角形和正六边形,公共边只用一根火柴棍.如果搭建等边三角形和正六边形共用了根火柴,并且等边三角形的个数比正六边形的个数多,那么连续搭建的等边三角形的个数是()…………A. B. C. D.以上答案都不对6.如图,在直角坐标系中,点A、B的坐标分别为(1,4)和(3,0),点C是y轴上的一个动点,且A、B、C三点不在同一条直线上,当△ABC的周长最小时,点C的坐标是A.(0,0) B.(0,1) C.(0,2) D.(0,3)7.如图,为估计池塘岸边A、B的距离,小方在池塘的一侧选取一点O,测得OA=15米,OB=10米,A、B间的距离不可能是()A.20米 B.15米 C.10米 D.5米8.如图,在△ABC中,分别以点A和点C为圆心,大于AC长为半径画弧,两弧相交于点M,N,作直线MN分别交BC,AC于点D,E,若AE=3cm,△ABD的周长为13cm,则△ABC的周长为()A.16cm B.19cm C.22cm D.25cm9.的平方根是()A.±5 B.5 C.± D.10.下列长度的三根木棒能组成三角形的是()A.2,3,4 B.2,2,4 C.2,3,6 D.1,2,4二、填空题(每小题3分,共24分)11.如图,把的一角折叠,若,则的度数为______.12.如图,在△ABC中,AB=AD=DC,∠B=70°,则∠C=______.13.如果一个多边形的每个外角都等于,那么这个多边形的内角和是______度.14.中是最简二次根式的是_____.15.如图,在△ABC中,∠A=60°,若剪去∠A得到四边形BCDE,则∠1+∠2=______.16.正比例函数的图像经过第______________________象限.17.如图,在□ABCD中,BE平分∠ABC,BC=6,DE=2,则□ABCD的周长等于__________.18.如图,点A的坐标是(2,2),若点P在x轴上,且△APO是等腰三角形,则点P有_____个.三、解答题(共66分)19.(10分)如图,点E、F在BC上,BE=CF,AB=DC,∠B=∠C,AF与DE交于点G,求证:GE=GF.20.(6分)如图,将一张长方形纸板按图中虚线裁剪成九块,其中有两块是边长都为m的大正方形,两块是边长都为n的小正方形,五块是长为m,宽为n的全等小长方形,且m>n.(以上长度单位:cm)(1)观察图形,可以发现代数式2m2+5mn+2n2可以因式分解为________;(2)若每块小长方形的面积为10cm2,四个正方形的面积和为58cm2,试求图中所有裁剪线(虚线部分)长之和.21.(6分)2019年11月30日上午符离大道正式开通,同时宿州至徐州的K902路城际公交开通试运营,小明先乘K902路城际公交车到五柳站下车,再步行到五柳景区游玩,从出发地到五柳景区全程31千米,共用了1个小时,已知步行的速度每小时4千米,K902路城际公交的速度是步行速度的10倍,求小明乘公交车所行驶的路程和步行的路程.22.(8分)为建国70周年献礼,某灯具厂计划加工9000套彩灯,为尽快完成任务,实际每天加工彩灯的数量是原计划的1.2倍,结果提前5天完成任务.求该灯具厂原计划每天加工这种彩灯的数量.23.(8分)(1)如图1,在△ABC中,∠ABC的平分线BF交AC于F,过点F作DF∥BC,求证:BD=DF.(2)如图2,在△ABC中,∠ABC的平分线BF与∠ACB的平分线CF相交于F,过点F作DE∥BC,交直线AB于点D,交直线AC于点E.那么BD,CE,DE之间存在什么关系?并证明这种关系.(3)如图3,在△ABC中,∠ABC的平分线BF与∠ACB的外角平分线CF相交于F,过点F作DE∥BC,交直线AB于点D,交直线AC于点E.那么BD,CE,DE之间存在什么关系?请写出你的猜想.(不需证明)24.(8分)如图,直角坐标系中,一次函数的图像分别与、轴交于两点,正比例函数的图像与交于点.(1)求的值及的解析式;(2)求的值;(3)在坐标轴上找一点,使以为腰的为等腰三角形,请直接写出点的坐标.25.(10分)(习题再现)课本中有这样一道题目:如图,在四边形中,分别是的中点,.求证:.(不用证明)(习题变式)(1)如图,在“习题再现”的条件下,延长与交于点,与交于点,求证:.(2)如图,在中,,点在上,,分别是的中点,连接并延长,交的延长线于点,连接,,求证:.26.(10分)如图,已知,为线段上一点,为线段上一点,,设,.①如果,那么_______,_________;②求之间的关系式.
参考答案一、选择题(每小题3分,共30分)1、C【分析】通过分析图象,点F从点A到D用as,此时,△FBC的面积为a,依此可求菱形的高DE,再由图象可知,BD=,应用两次勾股定理分别求BE和a.【详解】过点D作DE⊥BC于点E.由图象可知,点F由点A到点D用时为as,△FBC的面积为acm1..∴AD=a.∴DE•AD=a.∴DE=1.当点F从D到B时,用s.∴BD=.Rt△DBE中,BE=,∵四边形ABCD是菱形,∴EC=a-1,DC=a,Rt△DEC中,a1=11+(a-1)1.解得a=.故选C.【点睛】本题综合考查了菱形性质和一次函数图象性质,解答过程中要注意函数图象变化与动点位置之间的关系.2、B【分析】分两种情况:底边为3cm,底边为6cm时,结合三角形三边的关系,根据三角形的周长公式,可得答案.【详解】底边为3cm,腰长为6cm,这个三角形的周长是3+6+6=15cm,底边为6cm,腰长为3cm,3+3=6,不能以6cm为底构成三角形;故答案为:B.【点睛】本题考查了等腰三角形的性质,利用了等腰三角形的性质,三角形三边的关系,分类讨论是解题关键.3、B【分析】根据勾股定理和三角形的面积公式即可得到结论.【详解】解:∵BC==5,∵S△ABC=4×4﹣×1×1﹣×3×4﹣×3×4=,∴△ABC中BC边上的高==,故选:B.【点睛】此题重点考查学生对勾股定理和三角形面积的理解,掌握勾股定理和三角形面积计算公式是解题的关键.4、C【分析】题目给出等腰三角形有一条边长为4,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【详解】解:当4是腰长时,底边=14-4×2=6,此时4,4,6三边能够组成三角形,所以其腰长为4;
当4为底边长时,腰长为×(14-4)=5,
此时4、5、5能够组成三角形,
所以其腰长为5,
故选:C.【点睛】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.5、C【分析】设搭建了x个正三角形,y个正六边形,则搭建正三角形用掉了(2x+1)根火柴棍,搭建正六边形用掉了(5y+1)根火柴棍,根据“搭建正三角形和正六边形共用了2018根火柴棍,并且正三角形的个数比正六边形的个数多7个”,即可得出关于x,y的二元一次方程组,解之即可得出结论.【详解】解:设搭建了x个正三角形,y个正六边形,则搭建正三角形用掉了(2x+1)根火柴棍,搭建正六边形用掉了(5y+1)根火柴棍,依题意,得:,解得:.故答案为:C.【点睛】本题考查了二元一次方程组的应用以及规律型:图形的变化类,找准等量关系,正确列出二元一次方程组是解题的关键.6、D【解析】解:作B点关于y轴对称点B′点,连接AB′,交y轴于点C′,
此时△ABC的周长最小,
∵点A、B的坐标分别为(1,4)和(3,0),
∴B′点坐标为:(-3,0),则OB′=3过点A作AE垂直x轴,则AE=4,OE=1
则B′E=4,即B′E=AE,∴∠EB′A=∠B′AE,
∵C′O∥AE,
∴∠B′C′O=∠B′AE,∴∠B′C′O=∠EB′A∴B′O=C′O=3,
∴点C′的坐标是(0,3),此时△ABC的周长最小.
故选D.7、D【解析】∵5<AB<25,∴A、B间的距离不可能是5,故选D.8、B【分析】根据作法可知MN是AC的垂直平分线,利用垂直平分线的性质进行求解即可得答案.【详解】解:根据作法可知MN是AC的垂直平分线,∴DE垂直平分线段AC,∴DA=DC,AE=EC=6cm,∵AB+AD+BD=13cm,∴AB+BD+DC=13cm,∴△ABC的周长=AB+BD+BC+AC=13+6=19cm,故选B.【点睛】本题考查作图-基本作图,线段的垂直平分线的性质等知识,解题的关键是熟练掌握线段的垂直平分线的性质.9、C【解析】先求出=5,再根据平方根定义求出即可.【详解】∵=5,5的平方根是±∴的平方根是±,故选C.【点睛】本题考查了对平方根和算术平方根的应用,主要考查学生对平方根和算术平方根的定义的理解能力和计算能力,难度不大.10、A【分析】根据三角形的三边关系“任意两边之和大于第三边”,进行分析.【详解】A、2+3>4,能够组成三角形;B、2+2=4,不能构成三角形;C、2+3<6,不能组成三角形;D、1+2<4,不能组成三角形.故选:A.【点睛】此题考查了三角形的三边关系.判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数.二、填空题(每小题3分,共24分)11、65°【分析】根据折叠的性质得到∠3=∠5,∠4=∠6,利用平角的定义有∠3+∠5+∠1+∠2+∠4+∠6=360°,则2∠3+2∠4+∠1+∠2=360°,而∠1+∠2=130°,可计算出∠3+∠4=115°,然后根据三角形内角和定理即可得到∠A的度数.【详解】如图,∵△ABC的一角折叠,∴∠3=∠5,∠4=∠6,而∠3+∠5+∠1+∠2+∠4+∠6=360°,∴2∠3+2∠4+∠1+∠2=360°.∵∠1+∠2=130°,∴∠3+∠4=115°,∴∠A=180°﹣∠3﹣∠4=65°.故答案为65°.【点睛】本题考查了三角形的内角和定理:三角形的内角和为180°.也考查了折叠的性质.作出辅助线,把图形补充完整是解题的关键.12、35°【分析】先根据等腰三角形的性质求出∠ADB的度数,再由平角的定义得出∠ADC的度数,根据等腰三角形的性质即可得出结论.【详解】∵△ABD中,AB=AD,∠B=70°,
∴∠B=∠ADB=70°,
∴∠ADC=180°﹣∠ADB=110°,
∵AD=CD,
∴∠C=(180°﹣∠ADC)÷2=(180°﹣110°)÷2=35°.【点睛】本题主要考查等腰三角形的性质,熟练掌握等腰三角形的性质是解题的关键.13、1260【分析】首先根据外角和与外角和及每个外角的度数可得多边形的边数,再根据多边形内角和公式180(n-2)计算出答案.【详解】解:∵多边形的每一个外角都等于,∴它的边数为:,∴它的内角和:,故答案为:.【点睛】此题主要考查了多边形的内角和与外角和,根据多边形的外角和计算出多边形的边数是解题关键.14、﹣【分析】根据最简二次根式的概念即可求出答案.【详解】解:是最简二次根式;,不是最简二次根式,不是二次根式,故答案为:.【点睛】本题考查最简二次根式,解题的关键是正确理解最简二次根式的概念,属于基础题型.15、240.【详解】试题分析:∠1+∠2=180°+60°=240°.考点:1.三角形的外角性质;2.三角形内角和定理.16、二、四【分析】根据正比例函数的图象与性质解答即可.【详解】解:∵﹣5<0,∴正比例函数的图像经过第二、四象限.故答案为:二、四.【点睛】本题考查了正比例函数的图象与性质,属于应知应会题型,熟练掌握基本知识是解题的关键.17、1【分析】根据四边形ABCD为平行四边形可得AE∥BC,根据平行线的性质和角平分线的性质可得出∠ABE=∠AEB,继而可得AB=AE,然后根据已知可求得结果.【详解】解:∵四边形ABCD为平行四边形,∴AE∥BC,AD=BC,∴∠AEB=∠EBC,∵BE平分∠ABC,∴∠ABE=∠EBC,∴∠ABE=∠AEB,∴AB=AE,∴AE+DE=AD=BC=6,∴AE+2=6,∴AE=4,∴AB=CD=4,∴▱ABCD的周长=4+4+6+6=1,故答案为1.考点:平行四边形的性质.18、1【分析】由A点坐标可得OA=2,∠AOP=15°,分别讨论OA为腰和底边,求出点P在x轴正半轴和负半轴时,△APO是等腰三角形的P点坐标即可.【详解】(1)当点P在x轴正半轴上,①如图,以OA为腰时,∵A的坐标是(2,2),∴∠AOP=15°,OA=2,当∠AOP为顶角时,OA=OP=2,当∠OAP为顶角时,AO=AP,∴OPA=∠AOP=15°,∴∠OAP=90°,∴OP=OA=1,∴P的坐标是(1,0)或(2,0).②以OA为底边时,∵点A的坐标是(2,2),∴∠AOP=15°,∵AP=OP,∴∠OAP=∠AOP=15°,∴∠OPA=90°,∴OP=2,∴P点坐标为(2,0).(2)当点P在x轴负半轴上,③以OA为腰时,∵A的坐标是(2,2),∴OA=2,∴OA=OP=2,∴P的坐标是(﹣2,0).综上所述:P的坐标是(2,0)或(1,0)或(2,0)或(﹣2,0).故答案为1.【点睛】此题主要考查等腰三角形的判定及坐标与图形性质的综合运用,注意分类讨论思想的运用是解题关键.三、解答题(共66分)19、证明见解析.【解析】求出BF=CE,根据SAS推出△ABF≌△DCE,得对应角相等,由等腰三角形的判定可得结论.【详解】∵BE=CF,∴BE+EF=CF+EF,∴BF=CE,在△ABF和△DCE中,∴△ABF≌△DCE(SAS),∴∠GEF=∠GFE,∴EG=FG.【点睛】本题考查了全等三角形的判定与性质,等腰三角形的判定,熟练掌握三角形全等的判定方法是解题的关键.20、(1)(m+2n)(2m+n)(2)42cm【解析】(1)根据图象由长方形面积公式将代数式2m2+5mn+2n2因式分解即可;(2)求出m+n的值,然后根据图象由正方形的性质和长方形的性质即可得出结论;【详解】(1)2m2+5mn+2n2可以因式分解为(m+2n)(2m+n);故答案为(m+2n)(2m+n);(2)依题意得:2m2+2n2=58,mn=10,∴m2+n2=1.∴(m+n)2=m2+n2+2mn=49,∴m+n=7,∴图中所有裁剪线(虚线部分)长度之和为6m+6n=6(m+n)=6×7=42cm.【点睛】本题主要考查了因式分解的应用、列代数式以及完全平方公式的应用,根据已知图形得出是解题的关键.21、30千米;1千米【分析】设小明行驶的路程为x千米,步行的路程y千米,根据题意可得等量关系:①步行的路程+行驶的路程=31千米;②公交车行驶x千米时间+步行y千米的时间=1小时,根据题意列出方程组即可.【详解】解:设小明乘车路程为x千米,步行的路程y千米,∵公交的速度是步行速度的10倍,步行的速度每小时4千米,∴公交的速度是每小时40千米,由题意得:,解得:,∴小明乘公交车所行驶的路程为30千米,步行的路程为1千米.【点睛】本题主要考查了二元一次方程组的应用,关键是正确理解题意,找出题目中的等量关系.22、原计划每天加工这种彩灯的数量为300套.【分析】该灯具厂原计划每天加工这种彩灯的数量为套,由题意列出方程:,解方程即可.【详解】解:该灯具厂原计划每天加工这种彩灯的数量为套,则实际每天加工彩灯的数量为套,由题意得:,解得:,经检验,是原方程的解,且符合题意;答:该灯具厂原计划每天加工这种彩灯的数量为300套.【点睛】考核知识点:分式方程应用.理解题意,列出分式方程并解是关键.23、(1)见详解;(2)BD+CE=DE,证明过程见详解;(3)BD﹣CE=DE,证明过程见详解【分析】(1)根据平行线的性质和角平分线定义得出∠DFB=∠CBF,∠ABF=∠CBF,推出∠DFB=∠DBF,根据等角对等边推出即可;(2)与(1)证明过程类似,求出BD=DF,EF=CE,即可得出结论;(3)与(1)证明过程类似,求出BD=DF,EF=CE,即可得出结论.【详解】解:(1)∵BF平分∠ABC,∴∠ABF=∠CBF,∵DF∥BC,∴∠DFB=∠CBF,∴∠DFB=∠DBF,∴BD=DF;(2)BD+CE=DE,理由是:∵BF平分∠ABC,∴∠ABF=∠CBF,∵DF∥BC,∴∠DFB=∠CBF,∴∠DFB=∠DBF,∴BD=DF;同理可证:CE=EF,∵DE=DF+EF,∴BD+CE=DE;(3)BD﹣CE=DE.理由是:∵BF平分∠ABC,∴∠ABF=∠CBF,∵DF∥BC,∴∠DFB=∠CBF,∴∠DFB=∠DBF,∴BD=DF;同理可证:CE=EF,∵DE=DF﹣EF,∴BD﹣CE=DE.【点睛】本题考查了角平分线定义,平行线的性质,等腰三角形的判定等知识点,本题具有一定的代表性,三个问题证明过程类似.24、(1)m=4,l2的解析式为;(2)5;(3)点P的坐标为(),(0,),(0,5),(5,0),(8,0),(0,6).【分析】(1)先求得点C的坐标,再运用待定系数法即可得到l2的解析式;(2)过C作CD⊥AO于D,CE⊥BO于E,则CD=3,CE=4,再根据A(10,0),B(0,5),可得AO=10,BO=5,进而得出S△AOC-S△BOC的值;(3)由等腰三角形的定义,可对点P进行分类讨论,分别求出点P的坐标即可.【详解】解:(1)把C(m,3)代入一次函数,可得,解得m=4,∴C(4,3),设l2的解析式为y=ax,则3=4a,解得:a=,∴l2的解析式为:;(2)如图,过C作CD⊥AO于D,CE⊥BO于E,则CD=3,CE=4,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度网络安全技术研究与应用合同3篇
- 2024年度股权转让合同(含优先购买权条款)2篇
- 提升工作满意度的年度举措计划
- 团队合作在班级管理中的应用计划
- 2024专业商标设计委托合同版B版
- 全新环保科技公司2024年度废物处理合同5篇
- 新年工作计划的制定与执行
- 二零二四年度音视频系统安装合同5篇
- 2024年人工智能应用研发合同
- 2024年企业扩展生产融资合同范本版B版
- 大学生美术职业生涯规划
- 学校宿舍家具采购投标方案技术标
- 教师职业道德培训树师德师风演讲成品课件两篇
- 《从刺激到反应》课件
- 采访妈妈提纲的模板
- 项目一-旅游概述-(旅游概论课件完美版)
- 中国脑小血管病诊治共识
- 移动应用开发职业生涯规划书
- Unit1GreatexplorationsThevoyagesofZhengHe课件2023-2024学年牛津深圳版英语九年级下册
- 铁路工程施工方案审查内容
- 23年-具有良好的商业信誉和健全的 财务会计制度承诺函
评论
0/150
提交评论