版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
安徽亳州刘桥中学2023年数学八上期末学业质量监测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.下列各式中是完全平方式的是()A. B. C. D.2.如图,正方形ABCD中,E,F分别为AB,CD的中点,连接DE,BF,CE,AF,正方形ABCD的面积为1,则阴影部分的面积为()A. B. C. D.3.如图,已知AB=AC,AD⊥BC,AE=AF,图中共有()对全等三角形.A.5 B.6 C.7 D.84.如图,在△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB于E,下列结论:①CD=ED;②AC+BE=AB;③∠BDE=∠BAC;④BE=DE;⑤SBDE:S△ACD=BD:AC,其中正确的个数()A.5个 B.4个 C.3个 D.2个5.如图,已知△ABC与△ADE都是以A为直角顶点的等腰直角三角形,△ADE绕顶点A旋转,连接BD,CE.以下四个结论:①BD=CE;②∠AEC+∠DBC=45°;③BD⊥CE;④∠BAE+∠DAC=180°.其中结论正确的个数是()A.1 B.2 C.3 D.46.如图,若,则下列结论错误的是()A. B. C. D.7.下列各数中,不是无理数的是()A. B. C. D.8.下列计算结果正确的是()A. B. C. D.9.以下四组数中的三个数作为边长,不能构成直角三角形的是()A.1,, B.5,12,13 C.32,42,52 D.8,15,17.10.若正多边形的一个外角是,则这个正多边形的内角和是()A. B. C. D.11.的平方根是()A.±16 B. C.±2 D.12.如图所示,在折纸活动中,小明制作了一张纸片,点、分别是边、上,将沿着折叠压平,与重合,若,则().A.140 B.130 C.110 D.70二、填空题(每题4分,共24分)13.A,B两地相距48千米,一艘轮船从A地顺流航行至B地,又立即从B地逆流返回A地,共用去9小时,已知水流速度为4千米/时,若设该轮船在静水中的速度为x千米/时,则可列方程____________.14.A、B、C三地在同一直线上,甲、乙两车分别从A,B两地相向匀速行驶,甲车先出发2小时,甲车到达B地后立即调头,并将速度提高10%后与乙车同向行驶,乙车到达A地后,继续保持原速向远离B的方向行驶,经过一段时间后两车同时到达C地,设两车之间的距离为y(千米),甲行驶的时间x(小时).y与x的关系如图所示,则B、C两地相距_____千米.15.计算:,则__________.16.已知点与点关于轴对称,则_______.17.在中,°,,,某线段,,两点分别在和的垂线上移动,则当__________.时,才能使和全等.18.如图,在中,∠A=60°,D是BC边上的中点,DE⊥BC,∠ABC的平分线BF交DE于内一点P,连接PC,若∠ACP=m°,∠ABP=n°,则m、n之间的关系为______.三、解答题(共78分)19.(8分)如图,在平面直角坐标系中,的三个顶点都在格点上,点的坐标为,请解答下列问题:(1)画出关于轴对称的,并写出点的坐标.(2)画出关于轴对称的,并写出点的坐标.20.(8分)如图,△ABC中,AB=AC,∠BAC=45°,BD⊥AC,垂足为D点,AE平分∠BAC,交BD于F,交BC于E,点G为AB的中点,连接DG,交AE于点H,(1)求∠ACB的度数;(2)HE=AF21.(8分)某青春党支部在精准扶贫活动中,给结对帮扶的贫困家庭赠送甲、乙两种树苗让其栽种.已知乙种树苗的价格比甲种树苗贵10元,用480元购买乙种树苗的棵数恰好与用360元购买甲种树苗的棵数相同.(1)求甲、乙两种树苗每棵的价格各是多少元?(2)在实际帮扶中,他们决定再次购买甲、乙两种树苗共50棵,此时,甲种树苗的售价比第一次购买时降低了10%,乙种树苗的售价不变,如果再次购买两种树苗的总费用不超过1500元,那么他们最多可购买多少棵乙种树苗?22.(10分)如图,已知∠1=∠2,∠C=∠D,求证:∠A=∠F.23.(10分)如图,已知A(0,4)、B(﹣2,2)、C(3,0).(1)作△ABC关于x轴对称的△A1B1C1,并写出点B的对应点B1的坐标;(2)求△A1B1C1的面积S.24.(10分)某校八年级(1)班甲、乙两男生在5次引体向上测试中有效次数如下:甲:8,8,7,8,9;乙:5,9,7,10,9;甲乙两同学引体向上的平均数、众数、中位数、方差如下:平均数众数中位数方差甲8b80.4乙a9c3.2根据以上信息,回答下列问题:(1)表格是a=,b=,c=.(填数值)(2)体育老师根据这5次的成绩,决定选择甲同学代表班级参加年级引体向上比赛,选择甲的理由是.班主任李老师根据去年比赛的成绩(至少9次才能获奖),决定选择乙同学代表班级参加年级引体向上比赛,选择乙的理由是;(3)如果乙同学再做一次引体向上,有效次数为8,那么乙同学6次引体向上成绩的平均数,中位数,方差.(填“变大”、“变小”或“不变”)25.(12分)已知:如图,△ABC和△ECD都是等腰直角三角形,∠ACB=∠DCE=90°,D为AB边上的一点.求证:△ACE≌△BCD.26.如图,在△ABC中,AD是BC边的中线,E是AD的中点,过A点作AF∥BC交BE的延长线于点F,连结CF.求证:四边形ADCF是平行四边形.
参考答案一、选择题(每题4分,共48分)1、A【分析】根据完全平方公式a2±2ab+b2=(a±b)2进行分析,即可判断.【详解】解:,是完全平方公式,A正确;其余选项不能配成完全平方形式,故不正确
故选:A.【点睛】本题考查完全平方公式,解题的关键是正确理解完全平方公式,本题属于基础题型.2、C【解析】DEBF,AFEC,EGFH是平行四边形,E,F是中点,易得,四边形对角线垂直,是菱形.EF=1,GH=,面积=1=.3、C【分析】本题主要考查两个三角形全等的条件:两边夹一角(SAS),两角夹一边(ASA),两角对一边(AAS),三条边(SSS),HL.【详解】7对.理由:根据全等三角形判定可知:△ABE≌△ACF;△ABD≌△ACD;△ABO≌△ACO;△AEO≌△AFO;△COE≌△BOF;△DCO≌△DBO;△BCE≌△CBF.故选C.【点睛】本题考查全等三角形的判定,学生们熟练掌握判定的方法即可.4、C【分析】根据角平分线的性质,可得CD=ED,易证得△ADC≌△ADE,可得AC+BE=AB;由等角的余角相等,可证得∠BDE=∠BAC;然后由∠B的度数不确定,可得BE不一定等于DE;又由CD=ED,△ABD和△ACD的高相等,所以S△BDE:S△ACD=BE:AC.【详解】解:①正确,∵在△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB于E,∴CD=ED;②正确,因为由HL可知△ADC≌△ADE,所以AC=AE,即AC+BE=AB;③正确,因为∠BDE和∠BAC都与∠B互余,根据同角的补角相等,所以∠BDE=∠BAC;④错误,因为∠B的度数不确定,故BE不一定等于DE;⑤错误,因为CD=ED,△ABD和△ACD的高相等,所以S△BDE:S△ACD=BE:AC.故选:C.【点睛】此题考查了角平分线的性质以及全等三角形的判定与性质.此题比较适中,注意掌握数形结合思想的应用.5、C【分析】①由条件证明△ABD≌△ACE,就可以得到结论;②由条件知∠ABC=∠ABD+∠DBC=45°,由∠ABD=∠ACE就可以得出结论;③由△ABD≌△ACE就可以得出∠ABD=∠ACE,就可以得出∠CFG=90°,进而得出结论;④由∠BAE+∠EAD+∠DAC+∠BAC=360,即可得出结论.【详解】①∵∠BAC=∠DAE=90°,
∴∠BAC+∠DAC=∠DAE+∠DAC,
即∠BAD=∠CAE.
在△ABD和△ACE中,,
∴△ABD≌△ACE(SAS),
∴BD=CE,∴①正确;
②∵△ABD≌△ACE,∴∠ABD=∠ACE,∵∠BAC=90°,AB=AC,
∴∠ABC=45°,
∴∠ABD+∠DBC=45°.
∴∠ACE+∠DBC=45°,而∠ACE与∠AEC不一定相等,∴②错误;③设BD与CE、AC的交点分别为F、G,∵△ABD≌△ACE,∴∠ABD=∠ACE,∠AGB=∠FGC,
∵∠CAB=90°,
∴∠BAG=∠CFG=90°,
∴BD⊥CE,∴③正确;④∵∠BAE+∠EAD+∠DAC+∠BAC=360,∠EAD=∠BAC=90°,
∴∠BAE+∠DAC=360-90°-90°=180,∴④正确;综上,①③④正确,共3个.故选:C.【点睛】本题考查了等腰直角三角形的性质、旋转变换的性质、全等三角形的判定和性质,解题的关键是灵活运用这些知识解决问题.6、D【分析】根据“全等三角形的对应角相等、对应边相等”的性质进行判断并作出正确的选择.【详解】解:A、∠1与∠2是全等三角形△ABC≌△CDA的对应角,则,故本选项不符合题意;
B、线段AC与CA是全等三角形△ABC≌△CDA的对应边,则,故本选项不符合题意;
C、∠B与∠D是全等三角形△ABC≌△CDA的对应角,则∠B=∠D,故本选项不符合题意;
D、线段BC与DC不是全等三角形△ABC≌△CDA的对应边,则BC≠DC,故本选项符合题意;
故选:D.【点睛】本题考查了全等三角形的性质.利用全等三角形的性质时,一定要找对对应角和对应边.7、A【分析】根据无理数是无限不循环小数解答即可.【详解】是分数,是有理数.故选:A【点睛】本题考查的是无理数的识别,掌握无理数的定义是关键.8、D【解析】根据幂的加减和幂的乘方计算法则判断即可.【详解】A.,该选项错误;B.,该选项错误;C.不是同类项不可合并,该选项错误;D.,该选项正确;故选D.【点睛】本题考查幂的加减和幂的乘方计算,关键在于熟练掌握基础运算方法.9、C【解析】分别求出两小边的平方和和长边的平方,看看是否相等即可.【详解】A、∵12+()2=()2,∴以1,,为边能组成直角三角形,故本选项不符合题意;B、∵52+122=132,∴以5、12、13为边能组成直角三角形,故本选项不符合题意;C、∵92+162≠52,∴以32,42,52为边不能组成直角三角形,故本选项符合题意;D、∵82+152=172,∴8、15、17为边能组成直角三角形,故本选项不符合题意;故选C.【点睛】本题考查了勾股定理的逆定理,能熟记勾股定理的逆定理的内容是解此题的关键,注意:如果三角形的两边的平方和等于第三边的平方,那么这个三角形是直角三角形10、B【分析】利用多边形外角求得该多边形的边数,再利用多边形内角和公式即可解答.【详解】解:多边形外角和为360°,故该多边形的边数为360°÷60°=6;多边形内角和公式为:(n-2)×180°=(6-2)×180°=720°故选:B.【点睛】本题考查了多边形外角和以及多边形内角和公式,熟练掌握相关公式是解题关键.11、B【分析】先计算,再根据平方根的定义即可得到结论.【详解】解:∵,∴2的平方根是,故选:B.【点睛】本题考查平方根的定义,注意本题求的是的平方根,即2的平方根.12、A【分析】利用∠1所在平角∠AEC上与∠2所在平角∠ADB上出发,利用两个平角的和减去多余的角,就能得到∠1+∠2的和,多余的角需要可以看作2∠AED+2∠ADE,因为∠A=70°所以∠AED+∠ADE=180°-70°=110°,所以∠1+∠2=360°-2(∠AED+∠ADE)=360°-220°=140°【详解】∠AED+∠ADE=180°-70°=110°,∠1+∠2=∠AEC+∠ADB-2∠AED-2∠ADE=360°-2(∠AED+∠ADE)=360°-220°=140°【点睛】本题主要考查角度之间的转化,将需要求的角与已知联系起来二、填空题(每题4分,共24分)13、【分析】根据题意可列出相对应的方程,本题的等量关系为:顺流时间+逆流时间=9,从而可得解答本题;【详解】由题意可得,顺流时间为:;逆流时间为:.所列方程为:.【点睛】本题主要考查由实际问题抽象出分式方程的知识点.14、1.【分析】根据题意和函数图象中的数据,可以求得甲乙两车的速度,再根据“路程=速度×时间”,即可解答本题.【详解】解:设甲车的速度为a千米/小时,乙车的速度为b千米/小时,,解得,∴A、B两地的距离为:80×9=720千米,设乙车从B地到C地用的时间为x小时,60x=80(1+10%)(x+2﹣9),解得,x=22,则B、C两地相距:60×22=1(千米)故答案为:1.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.15、-1【分析】先根据二次根式与绝对值的非负性及非负数之和为零,得到各项均为零,再列出方程组求解即可.【详解】∵,,∴,∴解得:∴故答案为:-1.【点睛】本题主要考查了二次根式的非负性、绝对值的非负性及乘方运算,根据非负数之和为零得出各项均为零是解题关键.16、【分析】平面直角坐标系中任意一点P(x,y),关于y轴的对称点的坐标是(−x,y),即关于纵轴的对称点,纵坐标不变,横坐标变成相反数可得出a、b的值,即可得出答案.【详解】解:∵点与点关于轴对称,∴,,解得:,,∴,故答案为:.【点睛】本题主要考查了平面直角坐标系关于坐标轴成轴对称的两点的坐标之间的关系,难度适中.17、5㎝或10㎝【分析】本题要分情况讨论:①Rt△ABC≌Rt△QPA,此时AP=BC=5cm,可据此求出P点的位置;②Rt△ABC≌Rt△PQA,此时AP=AC,P、C重合.【详解】解:∵PQ=AB,∴根据三角形全等的判定方法HL可知,当P运动到AP=BC时,在Rt△ABC和Rt△QPA中,∴Rt△ABC≌Rt△QPA(HL),即AP=BC=5cm;当P运动到与C点重合时,在Rt△ABC和Rt△QPA中,∴Rt△ABC≌Rt△PQA(HL),即AP=AC=10cm.故答案为5㎝或10㎝.【点睛】本题考查三角形全等的判定方法和全等三角形的性质,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.由于本题没有说明全等三角形的对应边和对应角,因此要分类讨论,以免漏解.18、m+3n=1【分析】根据线段垂直平分线的性质,可得∠PBC=∠PCB,结合角平分线的定义,可得∠PBC=∠PCB=∠ABP,最后根据三角形内角和定理,从而得到m、n之间的关系.【详解】解:∵点D是BC边的中点,DE⊥BC,∴PB=PC,∴∠PBC=∠PCB,∵BP平分∠ABC,∴∠PBC=∠ABP,∴∠PBC=∠PCB=∠ABP=n°,∵∠A=60°,∠ACP=m°,∴∠PBC+∠PCB+∠ABP=1°-m°,∴3∠ABP=1°-m°,∴3n°+m°=1°,故答案为:m+3n=1.【点睛】本题主要考查了三角形内角和定理以及线段垂直平分线的性质的运用,角平分线的定义,解题时注意:线段垂直平分线上任意一点,到线段两端点的距离相等;三角形内角和等于180°.三、解答题(共78分)19、(1)见解析,;(2)见解析,【分析】(1)作出各点关于x轴的对称点,再顺次连接即可;(2)作出各点关于y轴的对称点,再顺次连接即可.【详解】(1)如图,即为所求,.(2)如图,即为所求,点.【点睛】本题考查的是作图-轴对称变换,熟知轴对称的性质是解答此题的关键.20、(1)67.5°.(2)证明见解析.【分析】(1)利用等边对等角可证:∠ACB=∠ABC,根据三角形内角和定理可以求出∠ACB的度数;(2)连接HB,根据垂直平分线的性质可证AE⊥BC,BE=CE,再根据ASA可证:Rt△BDC≌Rt△ADF,根据全等三角形的性质可证:BC=AF,从而可以求出HE=BE=BC,因为AF=BC,所以可证结论成立.【详解】解:(1)∵AB=AC,∴∠ACB=∠ABC,∵∠BAC=45°,∴∠ACB=∠ABC=(180°-∠BAC)=(180°-45°)=67.5°;(2)连结HB,
∵AB=AC,AE平分∠BAC,∴AE⊥BC,BE=CE,∴∠CAE+∠C=90°,∵BD⊥AC,∴∠CBD+∠C=90°,∴∠CAE=∠CBD,∵BD⊥AC,D为垂足,∴∠DAB+∠DBA=90°,∵∠DAB=45°,∴∠DBA=45°,∴∠DBA=∠DAB,∴DA=DB,在Rt△BDC和Rt△ADF中,∵∴Rt△BDC≌Rt△ADF(ASA),∴BC=AF,∵DA=DB,点G为AB的中点,∴DG垂直平分AB,∵点H在DG上,∴HA=HB,∴∠HAB=∠HBA=∠BAC=22.5°,∴∠BHE=∠HAB+∠HBA=45°,∴∠HBE=∠ABC-∠ABH=67.5°-22.5°=45°,∴∠BHE=∠HBE,∴HE=BE=BC,∵AF=BC,∴HE=AF.考点:1.全等三角形的判定与性质;2.垂直平分线的性质;3.等腰直角三角形的判定与性质.21、(1)甲种树苗每棵的价格是30元,乙种树苗每棵的价格是40元;(2)他们最多可购买11棵乙种树苗.【分析】(1)可设甲种树苗每棵的价格是x元,则乙种树苗每棵的价格是(x+10)元,根据等量关系:用480元购买乙种树苗的棵数恰好与用360元购买甲种树苗的棵数相同,列出方程求解即可;(2)可设他们可购买y棵乙种树苗,根据不等关系:再次购买两种树苗的总费用不超过1500元,列出不等式求解即可.【详解】(1)设甲种树苗每棵的价格是x元,则乙种树苗每棵的价格是(x+10)元,依题意有,解得:x=30,经检验,x=30是原方程的解,x+10=30+10=40,答:甲种树苗每棵的价格是30元,乙种树苗每棵的价格是40元;(2)设他们可购买y棵乙种树苗,依题意有30×(1﹣10%)(50﹣y)+40y≤1500,解得y≤11,∵y为整数,∴y最大为11,答:他们最多可购买11棵乙种树苗.【点睛】本题考查了分式方程的应用,一元一次不等式的应用,弄清题意,找准等量关系与不等关系列出方程或不等式是解决问题的关键.22、详见解析【解析】先根据,得出,故,可得,再由可知即可得到.【详解】证明:∵∠2=∠3,∠1=∠2,∴∠1=∠3,∴BD∥CE,∴∠C=∠ABD,∵∠C=∠D,∴∠ABD=∠D,∴DF∥AC,∴∠A=∠F.【点睛】本题考查的是平行线的判定与性质,用到的知识点为:同位角相等,两直线平行;内错角相等,两直线平行.23、(1)B1(﹣2,﹣2)(2)1【解析】试题分析:(1)根据关于x轴对称点的坐标特点,分别找出A、B、C三点的对称点坐标,然后描出对称点,再连接可得△A1B1C1,根据图形可直接写出点B1的坐标即可;(2)利用矩形的面积减去周围多余小三角形的面积即可.试题解析:(1)如图△A1B1C1即为所求作,B1(﹣2,﹣2);(2)△A1B1C1的面积:S=4×5﹣(2×2+2×5+3×4)=1.24、(1)a、b、c的值分别是8、8、9;(2)甲的方差较小,比较稳定;乙的中位数是9,众数是9,获奖次数较多;(3)不变;变小;变小.【分析】(1)根据平均数,中位数和方差的概念计算即可得出答案;(2)通
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 运动健身的训练安排计划
- 家政行业话务员工作总结
- 中班主题有趣的石头
- 幼儿园大班上学期科学教案有关《磁力组合》课件
- 美容院前台工作感受
- 生活美学创意课程设计
- 现代理论课程设计
- 2024年新型建筑工程原材料采购标准协议模板版
- 我的纸片人爸爸读后感
- 捐赠活动领导讲话稿
- 2024-2025学年广东省东莞市高三思想政治上册期末试卷及答案
- 9-XX人民医院样本外送检测管理制度(试行)
- 场地硬化合同范文
- 智力残疾送教上门教案
- 2024年上海市中考数学试卷真题(含答案)
- 刑事诉讼法综合实训报告
- 部编版五年级上册语文第七单元《-即景》作文500字【9篇】
- 2024年广东能源集团天然气有限公司招聘笔试参考题库附带答案详解
- 垃圾运输清运合同
- 基础工程-赵明华-第二章
- 肾病科主任述职报告
评论
0/150
提交评论