




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
高中数学集合复习课件汇报人:202X-12-21CATALOGUE目录集合的基本概念集合的基本运算集合与元素的关系集合的应用集合的扩展知识复习题与解答01集合的基本概念集合是由确定的、不同的元素所组成的。集合中的元素是互不相同的。集合与元素之间存在“属于”关系。什么是集合元素是构成集合的基本单位。元素可以是任何东西,如数字、字母、图形等。集合中的元素具有确定性、互异性和无序性。集合的元素将集合中的元素一一列举出来,用大括号{}括起来。列举法用描述集合中元素共有的特征的方式来表示集合。描述法集合的表示方法02集合的基本运算
交集、并集、补集交集两个集合A和B的交集是指既属于A又属于B的元素组成的集合,记作A∩B。并集两个集合A和B的并集是指属于A或属于B的元素组成的集合,记作A∪B。补集对于任意集合A,由不属于A的所有元素组成的集合称为A的补集,记作∁UA。A∩B=B∩A,A∪B=B∪A。交换律(A∩B)∩C=A∩(B∩C),(A∪B)∪C=A∪(B∪C)。结合律A∩(B∪C)=(A∩B)∪(A∩C),A∪(B∩C)=(A∪B)∩(A∪C)。分配律集合运算的基本性质子集与真子集01如果集合A的每一个元素都是集合B的元素,则称集合A是集合B的子集,记作A⊆B。如果集合A是集合B的子集但A≠B,则称集合A是集合B的真子集,记作A⊄B。空集02不含有任何元素的集合称为空集,记作∅。空集是任何集合的子集。全集03包含所有元素的集合称为全集,记作U。全集是任何集合的超集。集合运算的扩展03集合与元素的关系如果集合A的每一个元素都是集合B的元素,那么集合A是集合B的子集,记作A⊆B。如果集合A是集合B的子集,并且A≠B,那么集合A是集合B的真子集,记作A⊊B。子集与真子集真子集子集相等集如果两个集合的元素完全相同,那么这两个集合是相等的,记作A=B。空集不含有任何元素的集合称为空集,记作∅。相等集与空集并集交集差集补集集合的运算性质与元素的关系01020304将两个集合中的所有元素合并到一个新集合中,记作A∪B。将两个集合中共有的元素合并到一个新集合中,记作A∩B。从集合A中去掉集合B中的所有元素得到的新集合,记作A−B。将集合A在全集中去掉得到的集合称为A的补集,记作∁UA。04集合的应用集合论基础:集合是数学中最基本的概念之一,是研究数学的基础工具。在数学中,集合论为其他数学分支提供了基础,如代数、拓扑、实数理论等。集合运算:集合运算包括交、并、差、补等基本运算,这些运算在解决数学问题中具有重要作用。例如,在解决几何问题时,可以通过集合运算来求解两线段或两平面是否相交。集合论在数学中的应用还包括在概率论、数理统计、微积分等领域的应用。数学中的应用量子力学在量子力学中,集合用来描述量子系统的状态,如波函数。波函数是一种向量,其大小和方向分别描述了粒子的概率分布和相位。热力学在热力学中,集合用来描述系统的状态,如温度、压力和体积等。这些状态可以用集合中的元素来表示,而集合中的运算则用来描述这些状态之间的关系。统计力学在统计力学中,集合用来描述系统的微观状态,如分子或原子的位置和速度。这些微观状态可以用集合中的元素来表示,而集合中的运算则用来描述这些微观状态之间的关系。物理中的应用算法设计在算法设计中,集合用来表示一组数据或一组操作。例如,在排序算法中,可以用集合来表示待排序的元素;在图算法中,可以用集合来表示图的顶点和边。数据结构在数据结构中,集合用来表示一组数据元素。例如,在哈希表中,可以用集合来表示键值对;在二叉搜索树中,可以用集合来表示树的节点。形式语言与自动机理论在形式语言与自动机理论中,集合用来表示一组符号或一组状态。例如,在正则表达式中,可以用集合来表示一组符号;在有限自动机中,可以用集合来表示一组状态。计算机科学中的应用05集合的扩展知识定义设$A$和$B$是两个集合,由所有有序对$(a,b)(a\inA,b\inB)$组成的集合称为$A$和$B$的笛卡尔积,记作$A\timesB$。性质笛卡尔积的元素个数等于两个集合元素个数的乘积。笛卡尔积自然数集与有理数集自然数集自然数集是包含所有正整数和0的集合,记作$\mathbf{N}$。有理数集有理数集是包含所有可以表示为两个整数之比的数的集合,记作$\mathbf{Q}$。实数集实数集是包含所有有理数和无理数的集合,记作$\mathbf{R}$。复数集复数集是包含所有形如$a+bi$(其中$a,b\in\mathbf{R}$)的数的集合,记作$\mathbf{C}$。其中,实部为$a$,虚部为$b$。实数集与复数集06复习题与解答集合的基本概念:包含、并集、交集、补集集合的运算:并、交、补的运算规则集合的性质:空集、全集、补集的性质集合的表示方法:列举法、描述法01020304基础题目010204进阶题目集合的子集与真子集的判断集合的运算律:交换律、结合律、分配律集合的运算性质:幂集、对称差集、对称并集集合的运算应用:集合的交并运算在解不等式中的应用03罗素悖论、康托尔悖论等
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 档案管理考试背景知识总结试题及答案
- 公务员省考应对突发事件能力试题及答案
- 二级建造师品牌课程试题及答案
- 中学物理知识体系试题及答案
- 深入理解食品安全法及试题与答案
- 2024年秘书证考试策略与试题及答案
- 多媒体设计师考试经验总结分享试题及答案
- 咖啡师艺术与技术试题及答案
- 多媒体设计师考试前的心理调节技巧试题及答案
- 2024年咖啡师课程内容更新试题及答案
- 肩肘倒立公开课教案陈勇
- 色彩基础知识课件-PPT
- GB/T 13954-1992特种车辆标志灯具
- GB/T 1266-2006化学试剂氯化钠
- 纤维素酶活性的测定
- 2022“博学杯”全国幼儿识字与阅读大赛选拔试卷
- 2022年老年人健康管理工作总结
- ICU轮转护士考核试卷试题及答案
- 监理规划报审
- 《铸件检验记录表》
- 欧姆龙(OMRON)3G3JZ系列变频器使用说明书
评论
0/150
提交评论