2024届青海省西宁市海湖中学八上数学期末考试模拟试题含解析_第1页
2024届青海省西宁市海湖中学八上数学期末考试模拟试题含解析_第2页
2024届青海省西宁市海湖中学八上数学期末考试模拟试题含解析_第3页
2024届青海省西宁市海湖中学八上数学期末考试模拟试题含解析_第4页
2024届青海省西宁市海湖中学八上数学期末考试模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届青海省西宁市海湖中学八上数学期末考试模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.下列说法正确的是()A.等腰直角三角形的高线、中线、角平分线互相重合 B.有两条边相等的两个直角三角形全等C.四边形具有稳定性 D.角平分线上的点到角两边的距离相等2.下列一次函数中,y的值随着x值的增大而减小的是().A.y=x B.y=-x C.y=x+1 D.y=x-13.下列各式由左到右的变形中,属于分解因式的是()A.x2﹣16+6x=(x+4)(x﹣4)+6xB.10x2﹣5x=5x(2x﹣1)C.a2﹣b2﹣c2=(a﹣b)(a+b)﹣c2D.a(m+n)=am+an4.下列图形中,中心对称图形是()A. B. C. D.5.下列各式中正确的是()A. B. C. D.6.方程组的解为,则被遮盖的两个数分别为()A.5,1 B.3,1 C.3,2 D.4,27.中、、的对边分别是、、,下列命题为真命题的()A.如果,则是直角三角形B.如果,则是直角三角形C.如果,则是直角三角形D.如果,则是直角三角形8.下列各点位于平面直角坐标系内第二象限的是()A. B. C. D.9.下列长度的三根小木棒能构成三角形的是()A.2cm,3cm,5cm B.7cm,4cm,2cm C.3cm,4cm,8cm D.3cm,3cm,4cm10.下面运算结果为的是A. B. C. D.11.在平面直角坐标系中,点M(-1,3)关于x轴对称的点在()A.第一象限 B.第二象限 C.第三象限 D.第四象限12.下列命题是假命题的是A.全等三角形的对应角相等 B.若||=-,则a>0C.两直线平行,内错角相等 D.只有锐角才有余角二、填空题(每题4分,共24分)13.使分式有意义的x的取值范围是_____.14.若,则的值为______.15.如果,那么值是_____.16.小明家准备春节前举行80人的聚餐,需要去某餐馆订餐.据了解餐馆有10人坐和8人坐两种餐桌,要使所订的每个餐桌刚好坐满,则订餐方案共有______种.17.计算:的结果是________.18.“关心他人,奉献爱心”.我市某中学举行慈善一日捐活动,活动中七年级一班50名学生自发组织献爱心捐款活动.班长将捐款情况进行了统计,并绘制成了条形统计图.根据图中提供的信息,全班同学捐款的总金额是___元.三、解答题(共78分)19.(8分)先化简,再求值:已知,求的值.20.(8分)(1)解方程组:(2)解方程组:21.(8分)在一个含有两个字母的代数式中,如果任意交换这两个字母的位置.代数式的值不变,则称这个代数式为二元对称式,例如:,,,都是二元对称式,其中,叫做二元基本对称式.请根据以上材料解决下列问题:(1)下列各代数式中,属于二元对称式的是______(填序号);①;②;③;④.(2)若,,将用含,的代数式表示,并判断所得的代数式是否为二元对称式;(3)先阅读下面问题1的解决方法,再自行解决问题2:问题1:已知,求的最小值.分析:因为条件中左边的式子和求解中的式子都可以看成以,为元的对称式,即交换这两个元的位置,两个式子的值不变,也即这两个元在这两个式子中具有等价地位,所以当这两个元相等时,可取得最小值.问题2,①已知,则的最大值是______;②已知,则的最小值是______.22.(10分)如图,已知BD是△ABC的角平分线,点E、F分别在边AB、BC上,ED∥BC,EF∥AC.求证:BE=CF.23.(10分)为进一步营造扫黑除恶专项斗争的浓厚宣传氛围,推进平安校园建设,甲、乙两所学校各租用一辆大巴车组织部分师生,分别从距目的地240千米和270千米的两地同时出发,前往“研学教育”基地开展扫黑除恶教育活动,已知乙校师生所乘大巴车的平均速度是甲校师生所乘大巴车的平均速度的1.5倍,甲校师生比乙校师生晚1小时到达目的地,分别求甲、乙两所学校师生所乘大巴车的平均速度.24.(10分)如图,平面直角坐标系中,点A在第四象限,点B在x轴正半轴上,在△OAB中,∠OAB=90°,AB=AO=6,点P为线段OA上一动点(点P不与点A和点O重合),过点P作OA的垂线交x轴于点C,以点C为正方形的一个顶点作正方形CDEF,使得点D在线段CB上,点E在线段AB上.(1)①求直线AB的函数表达式.②直接写出直线AO的函数表达式;(2)连接PF,在Rt△CPF中,∠CFP=90°时,请直接写出点P的坐标为;(3)在(2)的前提下,直线DP交y轴于点H,交CF于点K,在直线OA上存在点Q.使得△OHQ的面积与△PKE的面积相等,请直接写出点Q的坐标.25.(12分)△ABC在平面直角坐标系中的位置如图所示.(1)画出△ABC关于y轴对称的△A1B1C1,并写出A1、B1、C1的坐标.(2)将△ABC向右平移6个单位,画出平移后的△A2B2C2;(3)观察△A1B1C1和△A2B2C2,它们是否关于某直线对称?若是,请在图上画出这条对称轴.26.今年,长沙开始推广垃圾分类,分类垃圾桶成为我们生活中的必备工具.某学校开学初购进型和型两种分类垃圾桶,购买型垃圾桶花费了2500元,购买型垃圾桶花费了2000元,且购买型垃圾桶数量是购买型垃圾桶数量的2倍,已知购买一个型垃圾桶比购买一个型垃圾桶多花30元.(1)求购买一个型垃圾桶、B型垃圾桶各需多少元?(2)由于实际需要,学校决定再次购买分类垃圾桶,已知此次购进型和型两种分类垃圾桶的数量一共为50个,恰逢市场对这两种垃圾桶的售价进行调整,型垃圾桶售价比第一次购买时提高了8%,型垃圾桶按第一次购买时售价的9折出售,如果此次购买型和型这两种垃圾桶的总费用不超过3240元,那么此次最多可购买多少个型垃圾桶?

参考答案一、选择题(每题4分,共48分)1、D【分析】根据等腰三角形的性质、全等三角形的判定、四边形的性质、角平分线的性质判断即可.【详解】解:等腰三角形底边上的中线、高线和所对角的角平分线互相重合,A选项错误;有两条边相等的两个直角三角形全等,必须是对应直角边或对应斜边,B选项错误;四边形不具有稳定性,C选项错误;角平分线上的点到角两边的距离相等,符合角平分线的性质,D选项正确.故选D.【点睛】本题比较简单,考查的是等腰三角形的性质、全等三角形的判定、四边形的性质、角平分线的性质,需要准确掌握定理内容进行判断.2、B【分析】根据一次函数的性质依次分析各项即可.【详解】解:A、C、D中,y的值随着x值的增大而增大,不符合题意;B、,y的值随着x值的增大而减小,本选项符合题意.故选B.【点睛】本题考查的是一次函数的性质,解答本题的关键是熟练掌握一次函数的性质:当时,y的值随着x值的增大而增大;当时,y的值随着x值的增大而减小.3、B【分析】根据因式分解的定义逐个进行判断即可.【详解】解:A、变形的结果不是几个整式的积,不是因式分解;B、把多项式10x2﹣5x变形为5x与2x﹣1的积,是因式分解;C、变形的结果不是几个整式的积,不是因式分解;D、变形的结果不是几个整式的积,不是因式分解;故选:B.【点睛】本题主要考察了因式分解的定义,理解因式分解的定义是解题的关键.4、C【分析】根据中心对称图形的定义:把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形进行解答.【详解】解:A、不是中心对称图形,故本选项错误;

B、不是中心对称图形,故本选项错误;

C、是中心对称图形,故本选项正确;

D、不是中心对称图形,故本选项错误.

故选:C.【点睛】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.5、D【分析】分别根据算术平方根、立方根的性质化简即可判断.【详解】解:A.,故选项A不合题意;

B.,故选项B不合题意;

C.,故选项C不合题意;

D.,故选项D符合题意.

故选D.【点睛】本题主要考查了算术平方根和立方根的定义,熟练掌握算术平方根和立方根的性质是解答本题的关键.6、A【分析】把x=2代入x+y=3中求出y的值,确定出2x+y的值即可.【详解】解:把x=2代入x+y=3中,得:y=1,把x=2,y=1代入得:2x+y=4+1=5,故选:A.【点睛】此题考查了二元一次方程组的解,熟练掌握运算法则是解本题的关键.7、D【分析】根据三角形内角和可判断A和B,根据勾股定理逆定理可判断C和D.【详解】解:A、∵∠A=2∠B=3∠C,∴,,∵∠A+∠B+∠C=180°,∴,∴∠A≈98°,故不符合题意;B、如果∠A:∠B:∠C=3:4:5,∠A+∠B+∠C=180°,∴∠C==75°,故不符合题意;C、如果a:b:c=1:2:2,∵12+22≠22,∴不是直角三角形,故不符合题意;D、如果a:b;c=3:4:,∵,∴△ABC是直角三角形,符合题意;故选:D.【点睛】本题主要考查命题与定理,三角形的内角和以及勾股定理的逆定理,解题的关键是熟练掌握勾股定理的逆定理和直角三角形的判定.8、A【分析】根据所给点的横纵坐标的符号可得所在象限.第二象限点特点(-,+)【详解】解:、,在第二象限,故此选项正确;、,在轴上,故此选项错误;、,在第四象限,故此选项错误;、,在轴上,故此选项错误;故选.【点睛】本题主要考查象限内点的符号特点,掌握每个象限点特点是解决此题的关键.9、D【详解】A.因为2+3=5,所以不能构成三角形,故A错误;B.因为2+4<6,所以不能构成三角形,故B错误;C.因为3+4<8,所以不能构成三角形,故C错误;D.因为3+3>4,所以能构成三角形,故D正确.故选D.10、B【解析】根据合并同类项法则、同底数幂的除法、同底数幂的乘法及幂的乘方逐一计算即可判断.【详解】.,此选项不符合题意;.,此选项符合题意;.,此选项不符合题意;.,此选项不符合题意;故选:.【点睛】本题考查了整式的运算,解题的关键是掌握合并同类项法则、同底数幂的除法、同底数幂的乘法及幂的乘方.11、C【解析】根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数可得点的坐标,再根据点的坐标确定所在象限.【详解】点M(-1,3)关于x轴对称的点坐标为(-1,-3),在第三象限,故选C.【点睛】本题考查的是关于x轴、y轴对称的点的坐标,熟练掌握关于x轴对称点的坐标特点是解题的关键.12、B【分析】分别根据全等三角形的性质、绝对值的性质、平行线的性质和余角的性质判断各命题即可.【详解】解:A.全等三角形的对应角相等,是真命题;B.若||=-,则a≤0,故原命题是假命题;C.两直线平行,内错角相等,是真命题;D.只有锐角才有余角,是真命题,故选:B.【点睛】此题主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题真假的关键是要熟悉课本中的性质定理.二、填空题(每题4分,共24分)13、x≠﹣1.【分析】直接利用分式有意义则分母不为零进而得出答案.【详解】解:∵分式有意义,∴x+1≠0,故x≠﹣1.故答案为:x≠﹣1.【点睛】本题主要考查分式有意义的条件,掌握分式有意义的条件是解题的关键.14、1【分析】根据题意把(m-n)看作一个整体并直接代入代数式进行计算即可得解.【详解】解:∵,∴,==(-1)1-(-1),=1+1,=1.故答案为:1.【点睛】本题考查代数式求值,熟练掌握整体思想的利用是解题的关键.15、1【分析】首先根据二次根式有意义的条件求出x,y的值,然后代入即可求出答案.【详解】根据二次根式有意义的条件可知解得∴故答案为:1.【点睛】本题主要考查代数式求值,掌握二次根式有意义的条件,求出相应的x,y的值是解题的关键.16、1【解析】试题分析:设10人桌x张,8人桌y张,根据题意得:10x+8y=80∵x、y均为整数,∴x=0,y=10或x=4,y=5或x=8,y=0共1种方案.故答案是1.考点:二元一次方程的应用.17、【分析】根据二次根式的乘法公式和积的乘方的逆用计算即可.【详解】解:====故答案为:【点睛】此题考查的是二次根式的运算,掌握二次根式的乘法公式和积的乘方的逆用是解决此题的关键.18、1620【分析】由表提供的信息可知,把金额乘以对应人数,然后相加即可.【详解】解:根据题意,得,总金额为:元;故答案为1620.【点睛】本题考查了有理数的加减乘除混合运算,解题的关键是读懂题意,根据表格中的数据进行计算.三、解答题(共78分)19、,【分析】原式括号中的两项分母分解因式后利用异分母分式加减法法则,先通分再运算,然后利用分式除法运算法则运算,约分化简,最后把的值代入求值即可.【详解】原式=====,当时,原式===【点睛】本题考查了分式的混合运算,重点是通分和约分的应用,掌握因式分解的方法,分式加减和乘除法法则为解题关键.20、(1);(2)【分析】(1)采用加减法求解消去y即可;(2)采用代入法消去x即可;【详解】解:(1)①×3+②×2得:13x=26,解得:x=2,把x=2代入①得:y=﹣3,则方程组的解为;(2)由①得:x﹣y=1③,把③代入②得:4﹣y=5,解得:y=﹣1,把y=﹣1代入③得:x=0,则方程组的解为.【点睛】本题考查了二元一次方程组的解法,解答关键是根据方程组中方程特点,灵活选用代入法或加减法求解.21、(1)②④(2),不是;(3)①;②1【分析】(1)根据题中二元对称式的定义进行判断即可;(2)将进行变形,然后将,,整体代入即可得到代数式,然后判断即可;(3)①根据问题1的解决方法,发现当两个代数式都为二元的对称式时,两个元相等时,另一个代数式取最值,然后即可得到答案;②令,将式子进行换元,得到两个二元对称式,即可解决问题.【详解】(1),①不是二元对称式,,②是二元对称式,,③不是二元对称式,,④是二元对称式,故答案为:②④;(2)∵,.∴,∴.当,交换位置时,代数式的值改变了,∴不是二元对称式.(3)①当时,即当时,有最大值,最大值为.②令,则,,∴当时,取最小值,即取到最小值,∴时,取到最小值,所以最小值为1.【点睛】本题考查了代数式的内容,正确理解题意,掌握换元法是解题的关键.22、证明见解析.【解析】试题分析:先利用平行四边形性质证明DE=CF,再证明EB=ED,即可解决问题.试题解析:∵ED∥BC,EF∥AC,∴四边形EFCD是平行四边形,∴DE=CF,∵BD平分∠ABC,∴∠EBD=∠DBC,∵DE∥BC,∴∠EDB=∠DBC,∴∠EBD=∠EDB,∴EB=ED,∴EB=CF.考点:平行四边形的判定与性质.23、甲、乙两校师生所乘大巴车的平均速度分别为60km/h和90km/h.【分析】解:设甲校师生所乘大巴车的平均速度为xkm/h,则乙校师生所乘大巴车的平均速度为1.5xkm/h,根据甲校师生比乙校师生晚1小时到达目的地列出方程进行求解即可.【详解】设甲校师生所乘大巴车的平均速度为xkm/h,则乙校师生所乘大巴车的平均速度为1.5xkm/h.根据题意得,解得x=60,经检验,x=60是原分式方程的解且符合实际意义,1.5x=90,答:甲、乙两校师生所乘大巴车的平均速度分别为60km/h和90km/h.【点睛】本题考查了分式方程的应用,弄清题意,找准等量关系列出方程是解题的关键.24、(1)①y=x﹣12;②y=﹣x;(2)(3,﹣3);(3)(2,﹣2)或(﹣2,2)【分析】(1)①利用等腰直角三角形的性质可以得到点A和点B的坐标,从而根据待定系数法求得直线AB的函数表达式;②根据点A和点O的坐标可以求得直线AO的表达式;(2)根据题意画出图形,首先得出点P、F、E三点共线,然后根据正方形的性质得出PE是△OAB的中位线,即点P为OA的中点,则点P的坐标可求;(3)根据题意画出图形,然后求出直线PD的解析式,得到点H的坐标,根据(2)中的条件和题意,可以求得△PKE的面积,再根据△OHQ的面积与△PKE的面积相等,可以得到点Q横坐标的绝对值,由点Q在直线AO上即可求得点Q的坐标.【详解】解:(1)①∵在△OAB中,∠OAB=90°,AB=AO=,∴△AOB是等腰直角三角形,OB=,∴∠AOB=∠ABO=45°,∴点A的坐标为(6,﹣6),点B的坐标为(12,0),设直线AB的函数表达式为y=kx+b,,得,即直线AB的函数表达式是y=x﹣12;②设直线AO的函数表达式为y=ax,6a=﹣6,得a=﹣1,即直线AO的函数表达式为y=﹣x,(2)点P的坐标为(3,﹣3),理由:如图:∵在Rt△CPF中,∠CFP=90°,∠CFE=90°,∴点P、F、E三点共线,∴PE∥OB,∵四边形CDEF是正方形,∠OPC=90°,∠COA=45°,∴CF=PF=AF=EF,∴PE是△OAB的中位线,∴点P为OA的中点,∴点P的坐标为(3,﹣3),故答案为:(3,﹣3);(3)如图,在△PFK和△DCK中,∴△PFK≌△DCK(AAS),∴CK=FK,则由(2)可知,PE=6,FK=1.5,BD=3∴点D(9,0)∴△PKE的面积是=4.5,∵△OHQ的面积与△PKE的面积相等,∴△OHQ的面积是4.5,设直线PD的函数解析式为y=mx+n∵点P(3,﹣3),点D(9,0)在直线PD上,∴,得,∴直线PD的函数解析式为y=,当x=0时,y=-,即点H的坐标为,∴OH=设点Q的横坐标为q,则,解得,q=±2,∵点Q在直线OA上,直线OA的表达式为y=﹣x,∴当x=2时,y=﹣2,当x=﹣2时,x=2,即点Q的坐标为(2,﹣2)或(﹣2,2),【点睛】本题主要考查等腰直角三角形的性质,正方形的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论