版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024学年绍兴市重点中学中考数学模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列基本几何体中,三视图都是相同图形的是()A. B. C. D.2.若不等式组2x-1>3x≤a的整数解共有三个,则aA.5<a<6 B.5<a≤6 C.5≤a<6 D.5≤a≤63.如图是一个正方体的表面展开图,如果对面上所标的两个数互为相反数,那么图中的值是().A. B. C. D.4.一个正方形花坛的面积为7m2,其边长为am,则a的取值范围为()A.0<a<1 B.l<a<2 C.2<a<3 D.3<a<45.已知抛物线c:y=x2+2x﹣3,将抛物线c平移得到抛物线c′,如果两条抛物线,关于直线x=1对称,那么下列说法正确的是()A.将抛物线c沿x轴向右平移个单位得到抛物线c′ B.将抛物线c沿x轴向右平移4个单位得到抛物线c′C.将抛物线c沿x轴向右平移个单位得到抛物线c′ D.将抛物线c沿x轴向右平移6个单位得到抛物线c′6.下列运算,结果正确的是()A.m2+m2=m4 B.2m2n÷mn=4mC.(3mn2)2=6m2n4 D.(m+2)2=m2+47.下列二次函数中,图象以直线x=2为对称轴、且经过点(0,1)的是()A.y=(x﹣2)2+1B.y=(x+2)2+1C.y=(x﹣2)2﹣3D.y=(x+2)2﹣38.不等式5+2x<1的解集在数轴上表示正确的是().A. B. C. D.9.下列说法错误的是()A.必然事件的概率为1B.数据1、2、2、3的平均数是2C.数据5、2、﹣3、0的极差是8D.如果某种游戏活动的中奖率为40%,那么参加这种活动10次必有4次中奖10.按如图所示的方法折纸,下面结论正确的个数()①∠2=90°;②∠1=∠AEC;③△ABE∽△ECF;④∠BAE=∠1.A.1个 B.2个 C.1个 D.4个11.小强是一位密码编译爱好者,在他的密码手册中,有这样一条信息:a﹣b,x﹣y,x+y,a+b,x2﹣y2,a2﹣b2分别对应下列六个字:昌、爱、我、宜、游、美,现将(x2﹣y2)a2﹣(x2﹣y2)b2因式分解,结果呈现的密码信息可能是()A.我爱美 B.宜晶游 C.爱我宜昌 D.美我宜昌12.下列各图中,既可经过平移,又可经过旋转,由图形①得到图形②的是()A. B. C. D.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.分解因式(xy﹣1)2﹣(x+y﹣2xy)(2﹣x﹣y)=_____.14.在直角坐标平面内有一点A(3,4),点A与原点O的连线与x轴的正半轴夹角为α,那么角α的余弦值是_____.15.如图,在矩形ABCD中,AD=4,点P是直线AD上一动点,若满足△PBC是等腰三角形的点P有且只有3个,则AB的长为.16.从“线段,等边三角形,圆,矩形,正六边形”这五个图形中任取一个,取到既是轴对称图形又是中心对称图形的概率是_____.17.若使代数式有意义,则x的取值范围是_____.18.一元二次方程x2=3x的解是:________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)关于x的一元二次方程mx2+(3m﹣2)x﹣6=1.(1)当m为何值时,方程有两个不相等的实数根;(2)当m为何整数时,此方程的两个根都为负整数.20.(6分)在平面直角坐标系xOy中,对于P,Q两点给出如下定义:若点P到两坐标轴的距离之和等于点Q到两坐标轴的距离之和,则称P,Q两点为同族点.下图中的P,Q两点即为同族点.(1)已知点A的坐标为(﹣3,1),①在点R(0,4),S(2,2),T(2,﹣3)中,为点A的同族点的是;②若点B在x轴上,且A,B两点为同族点,则点B的坐标为;(2)直线l:y=x﹣3,与x轴交于点C,与y轴交于点D,①M为线段CD上一点,若在直线x=n上存在点N,使得M,N两点为同族点,求n的取值范围;②M为直线l上的一个动点,若以(m,0)为圆心,为半径的圆上存在点N,使得M,N两点为同族点,直接写出m的取值范围.21.(6分)如图,将矩形ABCD沿对角线AC翻折,点B落在点F处,FC交AD于E.求证:△AFE≌△CDF;若AB=4,BC=8,求图中阴影部分的面积.22.(8分)某校七年级开展征文活动,征文主题只能从“爱国”“敬业”“诚信”“友善”四个主题中选择一个,七年级每名学生按要求都上交了一份征文,学校为了解选择各种征文主题的学生人数,随机抽取了部分征文进行了调查,根据调查结果绘制成如下两幅不完整的统计图.(1)将上面的条形统计图补充完整;(2)在扇形统计图中,选择“爱国”主题所对应的圆心角是多少度?(3)如果该校七年级共有1200名考生,请估计选择以“友善”为主题的七年级学生有多少名?23.(8分)阅读材料:各类方程的解法求解一元一次方程,根据等式的基本性质,把方程转化为x=a的形式.求解二元一次方程组,把它转化为一元一次方程来解;类似的,求解三元一次方程组,把它转化为解二元一次方程组.求解一元二次方程,把它转化为两个一元一次方程来解.求解分式方程,把它转化为整式方程来解,由于“去分母”可能产生增根,所以解分式方程必须检验.各类方程的解法不尽相同,但是它们有一个共同的基本数学思想转化,把未知转化为已知.用“转化”的数学思想,我们还可以解一些新的方程.例如,一元三次方程x3+x2-2x=0,可以通过因式分解把它转化为x(x2+x-2)=0,解方程x=0和x2+x-2=0,可得方程x3+x2-2x=0的解.问题:方程x3+x2-2x=0的解是x1=0,x2=,x3=;拓展:用“转化”思想求方程的解;应用:如图,已知矩形草坪ABCD的长AD=8m,宽AB=3m,小华把一根长为10m的绳子的一端固定在点B,沿草坪边沿BA,AD走到点P处,把长绳PB段拉直并固定在点P,然后沿草坪边沿PD、DC走到点C处,把长绳剩下的一段拉直,长绳的另一端恰好落在点C.求AP的长.24.(10分)计算:4cos30°+|3﹣|﹣()﹣1+(π﹣2018)025.(10分)如图1,在等腰△ABC中,AB=AC,点D,E分别为BC,AB的中点,连接AD.在线段AD上任取一点P,连接PB,PE.若BC=4,AD=6,设PD=x(当点P与点D重合时,x的值为0),PB+PE=y.小明根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.下面是小明的探究过程,请补充完整:(1)通过取点、画图、计算,得到了x与y的几组值,如下表:x0123456y5.24.24.65.97.69.5说明:补全表格时,相关数值保留一位小数.(参考数据:≈1.414,≈1.732,≈2.236)(2)建立平面直角坐标系(图2),描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;(3)求函数y的最小值(保留一位小数),此时点P在图1中的什么位置.26.(12分)甲、乙两人分别站在相距6米的A、B两点练习打羽毛球,已知羽毛球飞行的路线为抛物线的一部分,甲在离地面1米的C处发出一球,乙在离地面1.5米的D处成功击球,球飞行过程中的最高点H与甲的水平距离AE为4米,现以A为原点,直线AB为x轴,建立平面直角坐标系(如图所示).求羽毛球飞行的路线所在的抛物线的表达式及飞行的最高高度.27.(12分)某商场一种商品的进价为每件30元,售价为每件40元.每天可以销售48件,为尽快减少库存,商场决定降价促销.若该商品连续两次下调相同的百分率后售价降至每件32.4元,求两次下降的百分率;经调查,若该商品每降价0.5元,每天可多销售4件,那么每天要想获得510元的利润,每件应降价多少元?
参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、C【解题分析】
根据主视图、左视图、俯视图的定义,可得答案.【题目详解】球的三视图都是圆,故选C.【题目点拨】本题考查了简单几何体的三视图,熟记特殊几何体的三视图是解题关键.2、C【解题分析】
首先确定不等式组的解集,利用含a的式子表示,根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于a的不等式,从而求出a的范围.【题目详解】解不等式组得:2<x≤a,∵不等式组的整数解共有3个,∴这3个是3,4,5,因而5≤a<1.故选C.【题目点拨】本题考查了一元一次不等式组的整数解,正确解出不等式组的解集,确定a的范围,是解答本题的关键.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.3、D【解题分析】
根据正方体平面展开图的特征得出每个相对面,再由相对面上的两个数互为相反数可得出x的值.【题目详解】解:“3”与“-3”相对,“y”与“-2”相对,“x”与“-8”相对,故x=8,故选D.【题目点拨】本题主要考查了正方体相对面上的文字,解决本题的关键是要熟练掌握正方体展开图的特征.4、C【解题分析】
先根据正方形的面积公式求边长,再根据无理数的估算方法求取值范围.【题目详解】解:∵一个正方形花坛的面积为,其边长为,则a的取值范围为:.故选:C.【题目点拨】此题重点考查学生对无理数的理解,会估算无理数的大小是解题的关键.5、B【解题分析】∵抛物线C:y=x2+2x﹣3=(x+1)2﹣4,∴抛物线对称轴为x=﹣1.∴抛物线与y轴的交点为A(0,﹣3).则与A点以对称轴对称的点是B(2,﹣3).若将抛物线C平移到C′,并且C,C′关于直线x=1对称,就是要将B点平移后以对称轴x=1与A点对称.则B点平移后坐标应为(4,﹣3),因此将抛物线C向右平移4个单位.故选B.6、B【解题分析】
直接利用积的乘方运算法则、合并同类项法则和单项式除以单项式运算法则计算得出答案.【题目详解】A.m2+m2=2m2,故此选项错误;B.2m2n÷mn=4m,正确;C.(3mn2)2=9m2n4,故此选项错误;D.(m+2)2=m2+4m+4,故此选项错误.故答案选:B.【题目点拨】本题考查了乘方运算法则、合并同类项法则和单项式除以单项式运算法则,解题的关键是熟练的掌握乘方运算法则、合并同类项法则和单项式除以单项式运算法则.7、C【解题分析】试题分析:根据顶点式,即A、C两个选项的对称轴都为x=2,再将(0,1)代入,符合的式子为C选项考点:二次函数的顶点式、对称轴点评:本题考查学生对二次函数顶点式的掌握,难度较小,二次函数的顶点式解析式为y=(x-a)2+h,顶点坐标为8、C【解题分析】
先解不等式得到x<-1,根据数轴表示数的方法得到解集在-1的左边.【题目详解】5+1x<1,移项得1x<-4,系数化为1得x<-1.故选C.【题目点拨】本题考查了在数轴上表示不等式的解集:先求出不等式组的解集,然后根据数轴表示数的方法把对应的未知数的取值范围通过画区间的方法表示出来,等号时用实心,不等时用空心.9、D【解题分析】试题分析:A.概率值反映了事件发生的机会的大小,必然事件是一定发生的事件,所以概率为1,本项正确;B.数据1、2、2、3的平均数是1+2+2+34C.这些数据的极差为5﹣(﹣3)=8,故本项正确;D.某种游戏活动的中奖率为40%,属于不确定事件,可能中奖,也可能不中奖,故本说法错误,故选D.考点:1.概率的意义;2.算术平均数;3.极差;4.随机事件10、C【解题分析】∵∠1+∠1=∠2,∠1+∠1+∠2=180°,∴∠1+∠1=∠2=90°,故①正确;∵∠1+∠1=∠2,∴∠1≠∠AEC.故②不正确;∵∠1+∠1=90°,∠1+∠BAE=90°,∴∠1=∠BAE,又∵∠B=∠C,∴△ABE∽△ECF.故③,④正确;故选C.11、C【解题分析】试题分析:(x2﹣y2)a2﹣(x2﹣y2)b2=(x2﹣y2)(a2﹣b2)=(x﹣y)(x+y)(a﹣b)(a+b),因为x﹣y,x+y,a+b,a﹣b四个代数式分别对应爱、我,宜,昌,所以结果呈现的密码信息可能是“爱我宜昌”,故答案选C.考点:因式分解.12、D【解题分析】A,B,C只能通过旋转得到,D既可经过平移,又可经过旋转得到,故选D.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、(y﹣1)1(x﹣1)1.【解题分析】解:令x+y=a,xy=b,则(xy﹣1)1﹣(x+y﹣1xy)(1﹣x﹣y)=(b﹣1)1﹣(a﹣1b)(1﹣a)=b1﹣1b+1+a1﹣1a﹣1ab+4b=(a1﹣1ab+b1)+1b﹣1a+1=(b﹣a)1+1(b﹣a)+1=(b﹣a+1)1;即原式=(xy﹣x﹣y+1)1=[x(y﹣1)﹣(y﹣1)]1=[(y﹣1)(x﹣1)]1=(y﹣1)1(x﹣1)1.故答案为(y﹣1)1(x﹣1)1.点睛:因式分解的方法:(1)提取公因式法.ma+mb+mc=m(a+b+c).(1)公式法:完全平方公式,平方差公式.(3)十字相乘法.因式分解的时候,要注意整体换元法的灵活应用,训练将一个式子看做一个整体,利用上述方法因式分解的能力.14、【解题分析】
根据勾股定理求出OA的长度,根据余弦等于邻边比斜边求解即可.【题目详解】∵点A坐标为(3,4),∴OA==5,∴cosα=,故答案为【题目点拨】本题主要考查锐角三角函数的概念,在直角三角形中,在直角三角形中,正弦等于对边比斜边;余弦等于邻边比斜边;正切等于对边比邻边,熟练掌握三角函数的概念是解题关键.15、1.【解题分析】试题分析:如图,当AB=AD时,满足△PBC是等腰三角形的点P有且只有3个,△P1BC,△P2BC是等腰直角三角形,△P3BC是等腰直角三角形(P3B=P3C),则AB=AD=1,故答案为1.考点:矩形的性质;等腰三角形的性质;勾股定理;分类讨论.16、.【解题分析】
试题分析:在线段、等边三角形、圆、矩形、正六边形这五个图形中,既是中心对称图形又是轴对称图形的有线段、圆、矩形、正六边形,共4个,所以取到的图形既是中心对称图形又是轴对称图形的概率为.【题目点拨】本题考查概率公式,掌握图形特点是解题关键,难度不大.17、x≠﹣2【解题分析】
直接利用分式有意义则其分母不为零,进而得出答案.【题目详解】∵分式有意义,∴x的取值范围是:x+2≠0,解得:x≠−2.故答案是:x≠−2.【题目点拨】本题考查了分式有意义的条件,解题的关键是熟练的掌握分式有意义的条件.18、x1=0,x2=1【解题分析】
先移项,然后利用因式分解法求解.【题目详解】x2=1xx2-1x=0,x(x-1)=0,x=0或x-1=0,∴x1=0,x2=1.故答案为:x1=0,x2=1【题目点拨】本题考查了解一元二次方程-因式分解法:先把方程右边变形为0,再把方程左边分解为两个一次式的乘积,这样原方程转化为两个一元一次方程,然后解一次方程即可得到一元二次方程的解三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、(1)m≠1且m≠;(2)m=-1或m=-2.【解题分析】
(1)由方程有两个不相等的实数根,可得△>1,列出关于m的不等式解之可得答案;(2)解方程,得:,,由m为整数,且方程的两个根均为负整数可得m的值.【题目详解】解:(1)△=-4ac=(3m-2)+24m=(3m+2)≥1当m≠1且m≠时,方程有两个不相等实数根.(2)解方程,得:,,m为整数,且方程的两个根均为负整数,m=-1或m=-2.m=-1或m=-2时,此方程的两个根都为负整数【题目点拨】本题主要考查利用一元二次方程根的情况求参数.20、(1)①R,S;②(,0)或(4,0);(2)①;②m≤或m≥1.【解题分析】
(1)∵点A的坐标为(−2,1),∴2+1=4,点R(0,4),S(2,2),T(2,−2)中,0+4=4,2+2=4,2+2=5,∴点A的同族点的是R,S;故答案为R,S;②∵点B在x轴上,∴点B的纵坐标为0,设B(x,0),则|x|=4,∴x=±4,∴B(−4,0)或(4,0);故答案为(−4,0)或(4,0);(2)①由题意,直线与x轴交于C(2,0),与y轴交于D(0,).点M在线段CD上,设其坐标为(x,y),则有:,,且.点M到x轴的距离为,点M到y轴的距离为,则.∴点M的同族点N满足横纵坐标的绝对值之和为2.即点N在右图中所示的正方形CDEF上.∵点E的坐标为(,0),点N在直线上,∴.②如图,设P(m,0)为圆心,为半径的圆与直线y=x−2相切,∴PC=2,∴OP=1,观察图形可知,当m≥1时,若以(m,0)为圆心,为半径的圆上存在点N,使得M,N两点为同族点,再根据对称性可知,m≤也满足条件,∴满足条件的m的范围:m≤或m≥121、(1)证明见解析;(2)1.【解题分析】试题分析:(1)根据矩形的性质得到AB=CD,∠B=∠D=90°,根据折叠的性质得到∠E=∠B,AB=AE,根据全等三角形的判定定理即可得到结论;(2)根据全等三角形的性质得到AF=CF,EF=DF,根据勾股定理得到DF=3,根据三角形的面积公式即可得到结论.试题解析:(1)∵四边形ABCD是矩形,∴AB=CD,∠B=∠D=90°,∵将矩形ABCD沿对角线AC翻折,点B落在点E处,∴∠E=∠B,AB=AE,∴AE=CD,∠E=∠D,在△AEF与△CDF中,∵∠E=∠D,∠AFE=∠CFD,AE=CD,∴△AEF≌△CDF;(2)∵AB=4,BC=8,∴CE=AD=8,AE=CD=AB=4,∵△AEF≌△CDF,∴AF=CF,EF=DF,∴DF2+CD2=CF2,即DF2+42=(8﹣DF)2,∴DF=3,∴EF=3,∴图中阴影部分的面积=S△ACE﹣S△AEF=×4×8﹣×4×3=1.点睛:本题考查了翻折变换﹣折叠的性质,熟练掌握折叠的性质是解题的关键.22、(1)条形统计图如图所示,见解析;(2)选择“爱国”主题所对应的圆心角是144°;(3)估计选择以“友善”为主题的七年级学生有360名.【解题分析】
(1)根据诚信的人数和所占的百分比求出抽取的总人数,用总人数乘以友善所占的百分比,即可补全统计图;(2)用360°乘以爱国所占的百分比,即可求出圆心角的度数;(3)用该校七年级的总人数乘以“友善”所占的百分比,即可得出答案.【题目详解】解:(1)本次调查共抽取的学生有(名)选择“友善”的人数有(名)∴条形统计图如图所示:(2)∵选择“爱国”主题所对应的百分比为,∴选择“爱国”主题所对应的圆心角是;(3)该校七年级共有1200名学生,估计选择以“友善”为主题的七年级学生有名.故答案为:(1)条形统计图如图所示,见解析;(2)选择“爱国”主题所对应的圆心角是144°;(3)估计选择以“友善”为主题的七年级学生有360名.【题目点拨】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.23、(1)-2,1;(2)x=3;(3)4m.【解题分析】
(1)因式分解多项式,然后得结论;
(2)两边平方,把无理方程转化为整式方程,求解,注意验根;
(3)设AP的长为xm,根据勾股定理和BP+CP=10,可列出方程,由于方程含有根号,两边平方,把无理方程转化为整式方程,求解,【题目详解】解:(1),,所以或或,,;故答案为,1;(2),方程的两边平方,得即或,,当时,,所以不是原方程的解.所以方程的解是;(3)因为四边形是矩形,所以,设,则因为,,两边平方,得整理,得两边平方并整理,得即所以.经检验,是方程的解.答:的长为.【题目点拨】考查了转化的思想方法,一元二次方程的解法.解无理方程是注意到验根.解决(3)时,根据勾股定理和绳长,列出方程是关键.24、1【解题分析】
直接利用特殊角的三角函数值和负指数幂的性质、零指数幂的性质、二次根式的性质分别化简得出答案.【题目详解】原式=1×+2﹣3﹣2+1=2+2﹣1=1﹣1.【题目点拨】此题主要考查了实数运算,正确化简各数是解题关键.25、(1)4.5(2)根据数据画图见解析;(3)函数y的最小值为4.2,线段AD上靠近D点三等分点处.【解题分析】
(1)取点
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度棚改项目回迁房买卖合同范本
- 2025年桉树种植基地环保设施建设与运营合同3篇
- 2025版智能城市基础设施建设招投标与合同管理指导文件2篇
- 万科旅游房产买卖合同(2024年专用)3篇
- 二零二五年度专业配音演员独家聘用合同范本4篇
- 二零二五年度太阳能热水系统施工合同规范文本4篇
- 二零二五年度创业公司股权激励及期权授予合同3篇
- 二零二五年度团队旅游数据共享合同
- 2025年度写字楼退租合同(含办公家具设备退还明细)4篇
- 2025年度内墙刮瓷施工售后服务保障合同
- 城市微电网建设实施方案
- 企业文化融入中华传统文化的实施方案
- 9.1增强安全意识 教学设计 2024-2025学年统编版道德与法治七年级上册
- 《化工设备机械基础(第8版)》全套教学课件
- 人教版八年级数学下册举一反三专题17.6勾股定理章末八大题型总结(培优篇)(学生版+解析)
- 2024届上海高考语文课内古诗文背诵默写篇目(精校版)
- DL-T5024-2020电力工程地基处理技术规程
- 初中数学要背诵记忆知识点(概念+公式)
- 驾照体检表完整版本
- 农产品农药残留检测及风险评估
- 农村高中思想政治课时政教育研究的中期报告
评论
0/150
提交评论