版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
专题十二《空间向量在立体几何中的应用》讲义知识梳理.空间向量1.平面的法向量(1)直线的方向向量:如果表示非零向量a的有向线段所在直线与直线l平行或共线,则称此向量a为直线l的方向向量.(2)平面的法向量:直线l⊥α,取直线l的方向向量a,则向量a叫做平面α的法向量.(3)方向向量和法向量均不为零向量且不唯一.2.空间位置关系的向量表示位置关系向量表示直线l1,l2的方向向量分别为n1,n2l1∥l2n1∥n2⇔n1=kn2(k∈R)l1⊥l2n1⊥n2⇔n1·n2=0直线l的方向向量为n,平面α的法向量为ml∥αn⊥m⇔n·m=0l⊥αn∥m⇔n=km(k∈R)平面α,β的法向量分别为n,mα∥βn∥m⇔n=km(k∈R)α⊥βn⊥m⇔n·m=03.异面直线所成角设异面直线a,b所成的角为θ,则cosθ=eq\f(|a·b|,|a||b|),其中a,b分别是直线a,b的方向向量.4.直线与平面所成角如图所示,设l为平面α的斜线,l∩α=A,a为l的方向向量,n为平面α的法向量,φ为l与α所成的角,则sinφ=|cos〈a,n〉|=eq\f(|a·n|,|a||n|)5.二面角(1)若AB,CD分别是二面角αlβ的两个平面内与棱l垂直的异面直线,则二面角(或其补角)的大小就是向量eq\o(AB,\s\up7(→))与eq\o(CD,\s\up7(→))的夹角,如图(1).(2)平面α与β相交于直线l,平面α的法向量为n1,平面β的法向量为n2,〈n1,n2〉=θ,则二面角αlβ为θ或π-θ.设二面角大小为φ,则|cosφ|=|cosθ|=eq\f(|n1·n2|,|n1||n2|),如图(2)(3).6.利用空间向量求距离(1)两点间的距离设点A(x1,y1,z1),点B(x2,y2,z2),则|AB|=|eq\o(AB,\s\up7(→))|=eq\r(x1-x22+y1-y22+z1-z22).(2)点到平面的距离如图所示,已知AB为平面α的一条斜线段,n为平面α的法向量,则B到平面α的距离为|eq\o(BO,\s\up7(→))|=eq\f(|\o(AB,\s\up7(→))·n|,|n|).题型一.利用空间向量证明平行与垂直1.如图,四边形ABCD为正方形,PD⊥平面ABCD,PD∥QA,QA=AB=12(1)证明:PQ⊥平面DCQ;(2)证明:PC∥平面BAQ.2.如图,在长方体ABCD﹣A1B1C1D1中AA1=AD=1,E为CD中点.(1)求证:B1E⊥AD1;(2)在棱AA1上是否存在一点P,使得DP∥平面B1AE?若存在,求AP的长;若不存在,说明理由.3.如图,四棱锥S﹣ABCD中底面ABCD是正方形,AS⊥底面ABCD,且AS=AB,E是SC的中点,求证:平面BDE⊥平面ABCD.题型二.异面直线的夹角1.如图,在四棱锥P﹣ABCD中,底面ABCD是矩形,PA⊥底面ABCD,E是PC的中点,AB=2,AD=22,PA=2,则异面直线BC与AE所成的角的大小为()A.π6 B.π4 C.π32.正方体ABCD﹣A1B1C1D1中,点P在线段A1C上运动(包括端点),则BP与AD1所成角的取值范围是.3.在四棱锥P﹣ABCD中,PA⊥平面ABCD,底面四边形ABCD为直角梯形,AD∥BC,AD⊥AB,PA=AD=2,AB=BC=1,Q为PD中点.(Ⅰ)求证:PD⊥BQ;(Ⅱ)求异面直线PC与BQ所成角的余弦值.题型三.线面角1.如图,正三棱柱(底面是正三角形的直棱柱)ABC﹣A1B1C1的地面边长为a,侧棱长为2a,则AC1与侧面ABB1A1A.30° B.45° C.60° D.90°2.若直线l与平面α所成角为π3,直线a在平面α内,且与直线l异面,则直线l与直线aA.[0,23π] B.[π33.如图,在三棱锥P﹣ABC中,PA⊥AC,PA⊥AB,PA=AB,∠ABC=π3,∠BCA=π2,点D,E分别在棱PB,PC上,且(1)求证:BC⊥平面PAC;(2)当D为PB的中点时,求AD与平面PAC所成的角的正弦值.
题型四.二面角1.如图在三棱锥P﹣ABC中,PA⊥平面ABC,AC⊥BC,PA=AC=1,BC=2,求二面角A﹣PB﹣C的余弦值2.如图,设AB为圆锥PO的底面直径,PA为母线,点C在底面圆周上,若△PAB是边长为2的正三角形,且CO⊥AB,则二面角P﹣AC﹣B的正弦值是()A.6 B.427 C.77 3.如图,四面体ABCD中,△ABC是正三角形,△ACD是直角三角形,∠ABD=∠CBD,AB=BD.(1)证明:平面ACD⊥平面ABC;(2)过AC的平面交BD于点E,若平面AEC把四面体ABCD分成体积相等的两部分,求二面角D﹣AE﹣C的余弦值.题型五.空间中的距离1.已知正方体ABCD﹣A1B1C1D1的棱长为2,则点A到平面A1B1CD的距离为()A.233 B.2 C.2 2.在底面是直角梯形的四棱锥P﹣ABCD中,侧棱PA⊥底面ABCD,BC∥AD,∠ABC=90°,PA=AB=BC=2,AD=1,则AD到平面PBC的距离为.3.如图,已知两个正四棱锥P﹣ABCD与Q﹣ABCD的高分别为1和2,AB=4.(Ⅰ)证明PQ⊥平面ABCD;(Ⅱ)求异面直线AQ与PB所成的角;(Ⅲ)求点P到平面QAD的距离.
题型六.空间向量综合——存在问题、折叠问题1.如图,四棱锥P﹣ABCD中,侧面PAD为等边三角形且垂直于底面ABCD,AB=BC=12AD,∠BAD=∠ABC=90°,E是(1)证明:直线CE∥平面PAB;(2)点M在棱PC上,且直线BM与底面ABCD所成角为45°,求二面角M﹣AB﹣D的余弦值.2.如图,已知四棱锥P﹣ABCD,底面ABCD为菱形,PA⊥平面ABCD,∠ABC=60°,E,F分别是BC,PC的中点.(Ⅰ)证明:AE⊥PD;(Ⅱ)若H为PD上的动点,AB=2,EH与平面PAD所成最大角的正切值为62,求三棱锥E﹣AFC3.如图,四边形ABCD为平行四边形,点E在AB上,AE=2EB=2,且DE⊥AB.以DE为折痕把△ADE折起,使点A到达点F的位置,且∠FEB=60°.(Ⅰ)求证:平面BFC⊥平面BCDE;(Ⅱ)若直线DF与平面BCDE所成角的正切值为155,求二面角E﹣DF﹣C4.如图所示,等腰梯形ABCD中,AB∥CD,AD=AB=BC=2,CD=4,E为CD中点,AE与BD交于点O,将△ADE沿AE折起,使点D到达点P的位置(P∉平面ABCE).(Ⅰ)证明:平面POB⊥平面ABCE;(Ⅱ)若PB=6,试判断线段PB上是否存在一点Q(不含端点),使得直线PC与平面AEQ所成角的正弦值为155,若存在,求出
题型七.空间向量与立体几何选填综合1.如图,在正四棱柱ABCD﹣A1B1C1D1中,底面边长为2,直线CC1与平面ACD1所成角的正弦值为13A.2 B.3 C.4 D.52.如图,圆柱O1O2的底面圆半径为1,AB是一条母线,BD是⊙O1的直径,C是上底面圆周上一点,∠CBD=30°,若A,C两点间的距离为7,则圆柱O1O2的高为,异面直线AC与BD所成角的余弦值为.3.已知∠ACB=90°,P为平面ABC外一点,PC=2,点P到∠ACB两边AC,BC的距离均为3,那么P到平面ABC的距离为.4.如图,已知正方体ABCD﹣A1B1C1D1的棱长为4,点E,F分别是线段AB,C1D1上的动点,点P是上底面A1B1C1D1内一动点,且满足点P到点F的距离等于点P到平面ABB1A1的距离,则当点P运动时,PE的最小值是()A.5 B.4 C.42 D.255.如图,在正四棱柱ABCD﹣A1B1C1D1中,AA1=2,AB=BC=1,动点P、Q分别在线段C1D、AC上,则线段PQ长度的最小值时()A.23 B.33 C.236.如图,在棱长为2的正方体ABCD﹣A1B1C1D1中,M是棱AA1的中点,点P在侧面ABB1A1内,若D1P⊥CM,则△PBC的面积的最小值为7.如图,在棱长为1的正方体中,下列结论正确的是()A.异面直线AC与BC1所成的角为60° B.直线AB1与平面ABC1D1所成角为45° C.二面角A﹣B1C﹣B的正切值为2 D.四面体D1﹣AB1C的外接球的体积为38.如图,在棱长为4的正方体ABCD﹣A1B1C1D1中,M,N分别是A1D1,A1B1的中点,则()A.A1C⊥平面AMN B.二面角A1﹣MN﹣A的正切值为22C.三棱锥A1﹣AMN的内切球半径为12D.过直线BD与平面AMN平行的平面截该正方体所得截面的面积为18
课后作业.空间向量1.如图1,在直角梯形ABCD中,AB∥CD,∠B=90°,AB=3,CD=2,BC=3,E在AB上,且AD=AE.将△ADE沿DE折起,使得点A到点P的位置,且PB=PC,如图2.(1)证明:平面PDE⊥平面BCDE;(2)求二面角C﹣PB﹣E的正弦值.2.已知:在四棱锥P﹣ABCD中,AD∥BC,AB=BC=CD=12AD,G是PB的中点,△PAD是等边三角形,平面PAD⊥(Ⅰ)求证:CD⊥平面GAC;(Ⅱ)求二面角P﹣AG﹣C的余弦值.3.如图,四棱锥S﹣ABCD的底面是正方形,每条侧棱的长都是底面边长的2倍,P为侧棱SD上的点.(1)求证:AC⊥SD;(2)若SD⊥平面PAC,求二面角P﹣AC﹣D的大小;(3)在(2)的条件下,侧棱SC上是否存在一点E,使得BE∥平面PAC.若存在,求SE:EC的值;若不存在,试说明理由.4.如图,矩形ABCD中,AB=6,AD=23,点F是AC上的动点.现将矩形ABCD沿着对角线AC折成二面角D'﹣AC﹣B,使得D'B=(Ⅰ)求证:当AF=3时,D'F⊥BC(Ⅱ)试求CF的长,使得二面角A﹣D'F﹣B的大小为π45.如图,四棱锥P﹣ABCD中,PA⊥菱形ABCD所在的平面,∠ABC=60°,E是
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度幕墙施工材料运输与仓储合同4篇
- 2025年度企业债券发行承销服务合同规范文本3篇
- 二零二五年度出租车司机劳动合同及职业规划合同4篇
- 二手车买卖合同:2024专用版版B版
- 二零二五年度体育赛事组织打字员赛事资料合同2篇
- 2025版专业技术人员培训服务标准合同
- 二零二五年度虚拟现实年薪制合同2篇
- 二零二五版互联网直播内容审核及分成合同4篇
- 防火排烟系统的设计与应用
- 二零二五版木工行业电子商务平台建设与合作合同3篇
- 垃圾车驾驶员聘用合同
- 2024年大宗贸易合作共赢协议书模板
- 新闻记者证600道考试题-附标准答案
- 变压器搬迁施工方案
- 单位转账个人合同模板
- 八年级语文下册 成语故事 第十五课 讳疾忌医 第六课时 口语交际教案 新教版(汉语)
- 中考语文二轮复习:记叙文阅读物象的作用(含练习题及答案)
- 2024年1月高考适应性测试“九省联考”数学 试题(学生版+解析版)
- (正式版)JBT 11270-2024 立体仓库组合式钢结构货架技术规范
- EPC项目采购阶段质量保证措施
- T-NAHIEM 101-2023 急诊科建设与设备配置标准
评论
0/150
提交评论