版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023年陕西省安康市高职单招数学冲刺卷题库(含答案)学校:________班级:________姓名:________考号:________
一、单选题(50题)1.下列函数中在定义域内既是奇函数又是增函数的是()
A.y=x-3B.y=-x²C.y=3xD.y=2/x
2.已知圆的方程为x²+y²-4x+2y-4=0,则圆的半径为()
A.±3B.3C.√3D.9
3.同时掷两枚骰子,所得点数之积为12的概率为()
A.1/12B.1/4C.1/9D.1/6
4.已知两个班,一个班35个人,另一个班30人,要从两班中抽一名学生,则抽法共有()
A.1050种B.65种C.35种D.30种
5.在等差数列{an}中,a1=2,a3+a5=10,则a7=()
A.5B.8C.10D.12
6.已知向量a=(2,1),b=(3,5),则|2a一b|=
A.2B.√10C.√5D.2√2
7.某射击运动员的第一次打靶成绩为8,8,9,8,7第二次打靶成绩为7,8,9,9,7,则该名运动员打靶成绩的稳定性为()
A.一样稳定B.第一次稳定C.第二次稳定D.无法确定
8.在△ABC中,“cosA=cosB”是“A=B”的()
A.充分条件B.必要条件C.充要条件D.既不是充分也不是必要条件
9.不等式|x-5|≤3的整数解的个数有()个。
A.5B.6C.7D.8
10.已知α为第二象限角,sinα=3/5,则sin2α=()
A.-24/25B.-12/25C.12/25D.24/25
11.已知向量a=(-1,2),b=(0,-1),则a·(-b)=()
A.-2B.2C.-1D.1
12.在一个口袋中有除了颜色外完全相同的5个红球3个黄球、2个蓝球,从中任意取出5个球,则刚好2个红球、2个黄球、1个蓝球的概率是()
A.2/5B.5/21C.1/2D.3/5
13.两条平行直线l₁:3x+4y-10=0和l₂:6x+8y-7=0的距离为()
A.1B.17C.13D.13/10
14.已知{an}是等差数列,a₁+a₂=4,a₇+a₈=28,则该数列前10项和S₁₀等于()
A.64B.100C.110D.120
15.参加一个比赛,需在4名老师,6名男学生和4名女学生中选一名老师和一名学生参加,不同的选派方案共有多少种?()
A.14B.30C.40D.60
16.与y=sinx相等的是()
A.y=cos(x+Π)B.y=cos(x-Π)C.y=cos(Π/2-x)D.y=cos(Π/2+x)
17.抛物线y²=8x,点P到点(2,0)的距离为3,则点P到直线x=-2的距离是()
A.2√2B.2C.3D.4
18.若正实数x,y满足2x+y=1,则1/x+1/y的最小值为()
A.1/2B.1C.3+2√2D.3-2√2
19.下列函数在区间(0,+∞)上为减函数的是()
A.y=3x-1B.f(x)=log₂xC.g(x)=(1/2)^xD.A(x)=sinx
20.从某班的21名男生和20名女生中,任意选一名男生和一名女生代表班级参加评教座谈会则不同的选派方案共有()
A.41种B.420种C.520种D.820种
21.直线y=x+1与圆x²+y²=1的位置关系是()
A.相切B.相交但直线不过圆心C.直线过圆心D.相离
22.已知α∈(Π/2,Π),cos(Π-α)=√3/2,则tanα等于()
A.-√3/3B.√3/3C.-√3D.√3
23.在等差数列(an)中,a1=-33,d=6,使前n项和Sn取得最小值的n=()
A.5B.6C.7D.8
24.函数y=4sin2x(x∈R)的最小值是()
A.−4B.−1C.0D.4
25.某射手射中10环的概率为0.28,射中9环的概率为0.24,射中8环的概率为0.19,则这个射手一次射中低于8环的概率为()
A.0.71B.0.29C.0.19D.0.52
26.在复平面内,复数z=i(-2+i)对应的点位于()
A.第一象限B.第二象限C.第三象限D.第四象限
27.已知等差数列{an}的公差为2,若a₁,a₃,a₄成等比数列,则a₂=().
A.-4B.-6C.-8D.-10
28.f(-1)是定义在R上是奇函数,且对任意实数x,有f(x+4)=f(x),若f(-1)=3.则f(4)+f(5)=()
A.-3B.0C.3D.6
29.设向量a=(x,4),b=(2,-3),若a·b,则x=()
A.-5B.-2C.2D.7
30.设奇函数f(x)是定义在R上的增函数,且f(-1)=2,且满足f(x²-2x+2)≥一2,则x的取值范围是()
A.ØB.(2,+∞)C.RD.(2,+∞)D∪(-∞,0)
31.过点(1,2)且与直线+y+1=0垂直的直线方程是()
A.x-y-1=0B.y-x-1-0C.x+y-1=0D.x+y+2=0
32.从标有1,2,3,4,5的5张卡片中任取2张,那么这2张卡片数字之积为偶数的概率为()
A.7/20B.3/5C.7/10D.4/5
33.已知向量a=(2,-3),向量b=(一6,y),且a⊥b,则y=()
A.-9B.9C.4D.-4
34.抛物线y²=-8x的焦点坐标是()
A.(-2,0)B.(2,0)C.(0,-2)D.(0,2)
35.设f((x)是定义在R上的奇函数,已知当x≥0时,f(x)=x³-4x³,则f(-1)=()
A.-5B.-3C.3D.5
36.函数f(x)=ln(2-x)的定义域是()
A.[-2,2]B.(-2,2)C.(-∞,2)D.(-2,+∞)
37.已知向量a=(2,t),b=(1,2),若a∥b,则t=()
A.t=-4B.t=-1C.t=1D.t=4
38.在“绿水青山就是金山银山”这句话中任选一个汉字,这个字是“山”的概率为()
A.3/10B.1/10C.1/9D.1/8
39.不等式|x-1|<2的解集为()
A.y=x²B.y=x²-xC.y=x³D.y=1/x
40.(1-x³)(1+x)^10展开式中,x⁵的系数是()
A.−297B.−252C.297D.207
41.函数2y=-x²x+2()
A.有最小值1B.有最小值3C.有最大值1D.有最大值3
42.若某班有5名男生,从中选出2名分别担任班长和体育委员则不同的选法种数为()
A.5B.10C.15D.20
43.从2,3,5,7四个数中任取一个数,取到奇数的概率为()
A.1/4B.1/2C.1/3D.3/4
44.若x,a,2x,b成等差数列,则a/b=()
A.1/2B.3/5C.1/3D.1/5
45.双曲线(x²/17)-(y²/8)=1的右焦点的坐标为()
A.(0,5)B.(0,-5)C.(5,0)D.(-5,0)
46.将一个容量为40的样本分成若干组,在它的频率分布直方图中,若其中一组的相应的小长方形的面积是0.4,则该组的频数等于()
A.4B.6C.10D.16
47.在一个口袋中有2个白球和3个黑球,从中任意摸出2个球,则至少摸出1个黑球的概率是()
A.3/7B.9/10C.1/5D.1/6
48.若平面α//平面β,直线a⊂α,直线b⊂β那么直线a、b的位置关系是()
A.垂直B.平行C.异面D.不相交
49.已知集合A={0,1,2,3,4},B={0,2,4,8},那么A∩B子集的个数是()
A.6B.7C.8D.9
50.有10本书,第一天看1本,第二天看2本,不同的选法有()
A.120种B.240种C.360种D.720种
二、填空题(20题)51.在区间[-2,3]上随机选取一个数X,则X≤1的概率为________。
52..已知数据x₁,x₂,……x₂₀的平均数为18,则数据x₁+2,,x₂+2,x₂₀+2的平均数是______。
53.将一个容量为m的样本分成3组,已知第一组的频数为8,第2、3组的频率为0.15和0.45,则m=________。
54.已知数列{an}的前n项和Sn=n(n+1),则a₁₀=__________。
55.(√2-1)⁰+lg5+lg2-8^⅓=___________。
56.以点(−2,−1)为圆心,且过p(−3,0)的圆的方程是_________;
57.向量a=(一2,1),b=(k,k+1),若a//b,则k=________。
58.已知平面向量a=(1,2),=(一2,1),则a与b的夹角是________。
59.已知扇形的圆心角为120,半径为15cm,则扇形的弧长为________cm。
60.4张卡片上分别写有3,4,5,6,从这4张卡片中随机取两张,则取出的两张卡片上数字之和为偶数的概率为______。
61.已知向量a=(x-3,2),b(1,x),若a⊥b,则x=________。
62.某球的表面积为36Πcm²,则球的半径是________cm
63.已知等差数列{an}中,a₈=25,则a₇+a₈+a₉=________。
64.已知sin(a+b)cosa-cos(a+b)sina=-m,且b是第二象限的角,则cosb=________。
65.设集合A={m,n,p},试写出A的所有子集,并指出其中的真子集。
66.圆M:x²+4x+y²=0上的点到直l:y=2x-1的最短距离为________。
67.已知点A(1,2)和点B(3,-4),则以线段AB的中点为圆心,且与直线x+y=5相切的圆的标准方程是________。
68.将一个容量为n的样本分成3组,已知第1,2组的频率为0.2,0.5,第三组的频数为12,则n=________。
69.在等比数列中,q=2,a₁+a₃+a₅=21,则S₆=________。
70.小明想去参加同学会,想从3顶帽子、5件衣服、4条子中各选一样穿戴,则共有________种搭配方法。
三、计算题(10题)71.我国是一个缺水的国家,节约用水,人人有责;某市为了加强公民的节约用水意识,采用分段计费的方法A)月用水量不超过10m³的,按2元/m³计费;月用水量超过10m³的,其中10m³按2元/m³计费,超出部分按2.5元/m³计费。B)污水处理费一律按1元/m³计费。设用户用水量为xm³,应交水费为y元(1)求y与x的函数关系式(2)张大爷家10月份缴水费37元,问张大爷10月份用了多少水量?
72.某社区从4男3女选2人做核酸检测志愿者,选中一男一女的概率是________。
73.圆(x-1)²+(x-2)²=4上的点到直线3x-4y+20=0的最远距离是________。
74.数列{an}为等差数列,a₁+a₂+a₃=6,a₅+a₆=25,(1)求{an}的通项公式;(2)若bn=a₂n,求{bn}前n项和Sn;
75.已知sinα=1/3,则cos2α=________。
76.已知tanα=2,求(sinα+cosα)/(2sinα-cosα)的值。
77.求证sin²α+sin²β−sin²αsin²β+cos²αcos2²β=1;
78.已知在等差数列{an}中,a1=2,a8=30,求该数列的通项公式和前5项的和S5;
79.解下列不等式:x²≤9;
80.已知三个数成等差数列,它们的和为9,若第三个数加上4后,新的三个数成等比数列,求原来的三个数。
参考答案
1.C
2.B圆x²+y²-4x+2y-4=0,即(x-2)²+(y+1)²=9,故此圆的半径为3考点:圆的一般方程
3.C
4.B
5.B因为a3+a5=2a4=10,所以a4=5,所以d=(a4-a1)/(4-1)=1所以a7=a1+6d=8.考点:等差数列求基本项.
6.B
7.B
8.C[解析]讲解:由于三角形内角范围是(0,π)余弦值和角度一一对应,所以cosA=cosB与A=B是可以互相推导的,是充要条件,选C
9.C[解析]讲解:绝对值不等式的化简,-3≤x-5≤3,解得2≤x≤8,整数解有7个
10.A因为α为第二象限角,故cosα<0而sinα=3/5,cosα=-√1-sin²α=-4/5,所以sin2α=2sinαcosα=-24/25,故选A.考点:同角三角函数求值.感悟提高:已知sina或cosa,求sina或cosa时,注意a的象限,确定所求三角函数的符合,再开方.
11.B
12.B
13.D
14.B
15.C
16.C[解析]讲解:考察诱导公式,“奇变偶不变,符号看象限”,A,B为余弦,C,D为正弦,只有C是正的,选C
17.A
18.C考点:均值不等式.
19.C[解析]讲解:考察基本函数的性质,选项A,B为增函数,D为周期函数,C指数函数当底数大于0小于1时,为减函数。
20.B
21.B圆x²+y²=1的圆心坐标为(0,0),半径长为1,则圆心到直线y=x+1的距离d=1/√2=√2/2,因为0<√2/2<1,所以直线y=x+1与圆x²+y²=1相交但直线不过圆心.考点:直线与圆的位置关系.
22.A
23.B
24.A[解析]讲解:正弦函数图像的考察,正弦函数的最值是1和-1,所以4sin2x最小值为-4,选A
25.B
26.C
27.B[解析]讲解:等差数列中a₃=a₁+2d,a₄=a₁+3d,a₁,a₃,a₄成等差数列,所以(a₁+2d)²=a₁(a₁+3d),解得a₁=-8,a₂=-6
28.A
29.D
30.C
31.B
32.C
33.D
34.A
35.C
36.C
37.Da(2,t),b(1,2),因为a∥b,所以2*t-1*t=0,t=4,故选D.考点:平面向量共线.
38.A
39.A
40.D
41.D
42.D
43.D
44.B
45.C
46.D
47.B
48.D[解析]讲解:两面平行不会有交点,面内的直线也不可能相交,选D
49.C[解析]讲解:集合子集的考察,首先求A∩B={0,2,4}有三个元素,则子集的个数为2^3=8,选C
50.C
51.3/5
52.20
53.20
54.20
55.0
56.(x+2)²+(y+1)²=2
57.-2/3
58.90°
59.10Π
60.1/3
61.1
62.3
63.75
64.-√(1-m²)
65.所有的子集:Φ,﹛m﹜,﹛n﹜,﹛p﹜,﹛m,n﹜,﹛m,p﹜,﹛n,p﹜,﹛m,n,p﹜。真子集:Φ,﹛m﹜,﹛n﹜,﹛p﹜,﹛m,n﹜,﹛m,p﹜,﹛n,p﹜。
66.√5-2
67.(x-2)²+(y+1)²=8
68.40
69.63
70.60
71.解:(1)y=3x(0≤x≤10)y=3.5x-5(x>10)(2)因为张大爷10月份缴水费为37元,所以张大爷10月份用水量一定超过10m³又因为y=37所以3.5x-5=37所以x=12m³答:张大爷10月份用水12m³。
72.4/7
73.5
74.解:(1)由题得3a₁;+3d=6,2a₁+9d=25,解得a₁=-1,d=3,故an=a₁+(n-1)d=-1+(n-1)x3=3n-4。(2)因为:b
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- PEP人教版小学四年级上册Unit 1 My classroom PartC Story time课件
- 农村个人房屋买卖合同协议书范本
- (立项备案方案)椰雕项目立项申请报告
- 古代建筑行业中的追踪和定位- 王姣27课件讲解
- 山东省菏泽市郓城县第一中学2023-2024学年七年级上学期第一次月考生物试题(解析版)-A4
- 湖南省娄底市新化县2024-2025学年八年级上学期12月月考道德与法治试题-A4
- 兽医寄生虫题库与参考答案
- 养老院老人心理关爱制度
- 养老院老人紧急救援人员职业道德制度
- 房屋建筑项目工程总承包合同(2篇)
- 普通化学习题库
- 穿孔机操作规程
- 危机公关处理技巧
- 10、特种作业人员管理台账
- 机械基础考试题库及参考答案
- GB/T 70.1-2008内六角圆柱头螺钉
- 第一章数学的萌芽
- GB/T 24628-2009医疗保健产品灭菌生物与化学指示物测试设备
- GB/T 24176-2009金属材料疲劳试验数据统计方案与分析方法
- 多发性骨髓瘤的疗效评估
- 导视系统设计讲解课件
评论
0/150
提交评论