北师大《勾股定理》教案(通用5篇)_第1页
北师大《勾股定理》教案(通用5篇)_第2页
北师大《勾股定理》教案(通用5篇)_第3页
北师大《勾股定理》教案(通用5篇)_第4页
北师大《勾股定理》教案(通用5篇)_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

北师大《勾股定理》教案北师大《勾股定理》教案(通用5篇)作为一名教师,通常会被要求编写教案,编写教案有利于我们弄通教材内容,进而选择科学、恰当的教学方法。那么问题来了,教案应该怎么写?下面是小编为大家整理的北师大《勾股定理》教案(通用5篇),仅供参考,大家一起来看看吧。北师大《勾股定理》教案1一、教材分析:(一)教材的地位与作用从知识结构上看,勾股定理揭示了直角三角形三条边之间的数量关系,为后续学习解直角三角形提供重要的理论依据,在现实生活中有着广泛的应用。从学生认知结构上看,它把形的特征转化成数量关系,架起了几何与代数之间的桥梁;勾股定理又是对学生进行爱国主义教育的良好素材,因此具有相当重要的地位和作用。根据数学新课程标准以及八年级学生的认知水平我确定如下学习目标:知识技能、数学思考、问题解决、情感态度。其中情感态度方面,以我国数学文化为主线,激发学生热爱祖国悠久文化的情感。(二)重点与难点为变被动接受为主动探究,我确定本节课的重点为:勾股定理的探索过程。限于八年级学生的思维水平,我将面积法(拼图法)发现勾股定理确定为本节课的难点,我将引导学生动手实验突出重点,合作交流突破难点。二、教学与学法分析教学方法叶圣陶说过"教师之为教,不在全盘授予,而在相机诱导。"因此教师利用几何直观提出问题,引导学生由浅入深的探索,设计实验让学生进行验证,感悟其中所蕴涵的思想方法。学法指导为把学习的主动权还给学生,教师鼓励学生采用动手实践,自主探索、合作交流的学习方法,让学生亲自感知体验知识的形成过程。三、教学过程我国数学文化源远流长、博大精深,为了使学生感受其传承的魅力,我将本节课设计为以下五个环节。首先,情境导入古韵今风给出《七巧八分图》中的一组图片,让学生利用两组七巧板进行合作拼图。让学生观察并思考三个正方形面积之间的关系?它们围成了怎么样三角形,反映在三边上,又蕴含着怎么样数学奥秘呢?寓教于乐,激发学生好奇、探究的欲望。第二步追溯历史解密真相勾股定理的探索过程是本节课的重点,依照数学知识的循序渐进、螺旋上升的原则,我设计如下三个活动。从上面低起点的问题入手,有利于学生参与探索。学生很容易发现,在等腰三角形中存在如下关系。巧妙的将面积之间的关系转化为边长之间的关系,体现了转化的思想。观察发现虽然直观,但面积计算更具说服力。将图形转化为边在格线上的图形,以便于计算图形面积,体现了数形结合的思想。学生会想到用"数格子"的方法,这种方法虽然简单易行,但对于下一步探索一般直角三角形并不适用,具有局限性。因此教师应引导学生利用"割"和"补"的方法求正方形C的面积,为下一步探索复杂图形的面积做铺垫。突破等腰直角三角形的束缚,探索在一般情况下的直角三角形是否也存在这一结论呢?体现了"从特殊到一般"的认知规律。教师给出边长单位长度分别为3、4、5的直角三角形,避免了学生因作图不准确而产生的错误,也为下面"勾三股四弦五"的提出埋下伏笔。有了上一环节的铺垫,有效地分散了难点。在求正方形C的面积时,学生将展示"割"的方法,"补"的方法,有的学生可能会发现平移的方法,旋转的方法,对于这两种新方法教师应给于表扬,肯定学生的研究成果,培养学生的类比、迁移以及探索问题的能力。使用几何画板动态演示,使几何与代数之间的关系可视化。当为直角三角形时,改变三边长度三边关系不变,当∠α为锐角或钝角时,三边关系就改变了,进而强调了命题成立的前提条件必须是直角三角形。加深学生对勾股定理理解的同时也拓展了学生的视野。以上三个环节层层深入步步引导,学生归纳得到命题1,从而培养学生的合情推理能力以及语言表达能力。感性认识未必是正确的,推理验证证实我们的猜想。第三步推陈出新借古鼎新教材中直接给出"赵爽弦图"的证法对学生的思维是一种禁锢,教师创新使用教材,利用拼图活动解放学生的大脑,让学生发挥自己的聪明才智证明勾股定理。这是教学的难点也是重点,教师应给学生充分的自主探索的时间与空间,让学生的思维在相互讨论中碰撞、在相互学习中完善。教师深入到学生中间,观察学生探究方法接受学生的质疑,对于不同的拼图方案给予肯定。从而体现出"学生是学习的主体,教师是组织者、引导者与合作者"这一教学理念。学生会发现两种证明方案。方案1为赵爽弦图,学生讲解论证过程,再现古代数学家的探索方法。方案2为学生自己探索的结果,论证之巧较方案1有异曲同工之妙。整个探索过程,让学生经历由表面到本质,由合情推理到演绎推理的发掘过程,体会数学的严谨性。对比"古"、"今"两种证法,让学生体会"吹尽黄沙始到金"的喜悦,感受到"青出于蓝而胜于蓝"的自豪感。板书勾股定理,进而给出字母表示,培养学生的符号意识。教师对"勾、股、弦"的含义以及古今中外对勾股定理的研究做一个介绍,使学生感受数学文化,培养民族自豪感和爱国主义精神。利用勾股树动态演示,让学生欣赏数学的精巧、优美。第四步取其精华古为今用我按照"理解—掌握—运用"的梯度设计了如下三组习题。(1)对应难点,巩固所学。(2)考查重点,深化新知。(3)解决问题,感受应用。第五步温故反思任务后延在课堂接近尾声时,我鼓励学生从"四基"的要求对本节课进行小结。进而总结出一个定理、二个方案、三种思想、四种经验。然后布置作业,分层作业体现了教育面向全体学生的理念。北师大《勾股定理》教案2一、教材分析:勾股定理是学生在已经掌握了直角三角形的有关性质的基础上进行学习的,它是直角三角形的一条非常重要的性质,是几何中最重要的定理之一,它揭示了一个三角形三条边之间的数量关系,它可以解决直角三角形中的计算问题,是解直角三角形的主要根据之一,在实际生活中用途很大。教材在编写时注意培养学生的动手操作能力和分析问题的能力,通过实际分析、拼图等活动,使学生获得较为直观的印象;通过联系和比较,理解勾股定理,以利于正确的进行运用。据此,制定教学目标如下:1、理解并掌握勾股定理及其证明。2、能够灵活地运用勾股定理及其计算。3、培养学生观察、比较、分析、推理的能力。4、通过介绍中国古代勾股方面的成就,激发学生热爱祖国与热爱祖国悠久文化的思想感情,培养他们的民族自豪感和钻研精神。二、教学重点:勾股定理的证明和应用。三、教学难点:勾股定理的证明。四、教法和学法:教法和学法是体现在整个教学过程中的,本课的教法和学法体现如下特点:以自学辅导为主,充分发挥教师的主导作用,运用各种手段激发学生学习欲望和兴趣,组织学生活动,让学生主动参与学习全过程。切实体现学生的主体地位,让学生通过观察、分析、讨论、操作、归纳,理解定理,提高学生动手操作能力,以及分析问题和解决问题的能力。通过演示实物,引导学生观察、操作、分析、证明,使学生得到获得新知的成功感受,从而激发学生钻研新知的欲望。五、教学程序:本节内容的教学主要体现在学生动手、动脑方面,根据学生的认知规律和学习心理,教学程序设计如下:(一)创设情境以古引新1、由故事引入,3000多年前有个叫商高的人对周公说,把一根直尺折成直角,两端连接得到一个直角三角形,如果勾是3,股是4,那么弦等于5。这样引起学生学习兴趣,激发学生求知欲。2、是不是所有的直角三角形都有这个性质呢?教师要善于激疑,使学生进入乐学状态。3、板书课题,出示学习目标。(二)初步感知理解教材教师指导学生自学教材,通过自学感悟理解新知,体现了学生的自主学习意识,锻炼学生主动探究知识,养成良好的自学习惯。(三)质疑解难、讨论归纳:1、教师设疑或学生提疑。如:怎样证明勾股定理?学生通过自学,中等以上的学生基本掌握,这时能激发学生的表现欲。2、教师引导学生按照要求进行拼图,观察并分析;(1)这两个图形有什么特点?(2)你能写出这两个图形的面积吗?(3)如何运用勾股定理?是否还有其他形式?这时教师组织学生分组讨论,调动全体学生的积极性,达到人人参与的效果,接着全班交流。先有某一组代表发言,说明本组对问题的理解程度,其他各组作评价和补充。教师及时进行富有启发性的点拨,最后,师生共同归纳,形成一致意见,最终解决疑难。(四)巩固练习强化提高1、出示练习,学生分组解答,并由学生总结解题规律。课堂教学中动静结合,以免引起学生的疲劳。2、出示例1学生试解,师生共同评价,以加深对例题的理解与运用。针对例题再次出现巩固练习,进一步提高学生运用知识的能力,对练习中出现的情况可采取互评、互议的形式,在互评互议中出现的具有代表性的问题,教师可以采取全班讨论的形式予以解决,以此突出教学重点。(五)归纳总结练习反馈引导学生对知识要点进行总结,梳理学习思路。分发自我反馈练习,学生独立完成。本课意在创设愉悦和谐的乐学气氛,优化教学手段,借助多媒体提高课堂教学效率,建立平等、民主、和谐的师生关系。加强师生间的合作,营造一种学生敢想、感说、感问的课堂气氛,让全体学生都能生动活泼、积极主动地教学活动,在学习中创新精神和实践能力得到培养。北师大《勾股定理》教案3一、教材分析(一)教材地位这节课是九年制义务教育初级中学教材北师大版八年级第一章第一节《探索勾股定理》第一课时,勾股定理是几何中几个重要定理之一,它揭示的是直角三角形中三边的数量关系。它在数学的发展中起过重要的作用,在现时世界中也有着广泛的作用。学生通过对勾股定理的学习,可以在原有的基础上对直角三角形有进一步的认识和理解。(二)教学目标知识与能力:掌握勾股定理,并能运用勾股定理解决一些简单实际问题。过程与方法:经历探索及验证勾股定理的过程,了解利用拼图验证勾股定理的方法,发展学生的合情推理意识、主动探究的习惯,感受数形结合和从特殊到一般的思想。情感态度与价值观:激发学生爱国热情,让学生体验自己努力得到结论的成就感,体验数学充满探索和创造,体验数学的美感,从而了解数学,喜欢数学。(三)教学重点:经历探索及验证勾股定理的过程,并能用它来解决一些简单的实际问题。教学难点:用面积法(拼图法)发现勾股定理。突出重点、突破难点的办法:发挥学生的主体作用,通过学生动手实验,让学生在实验中探索、在探索中领悟、在领悟中理解。二、教法与学法分析:学情分析:八年级学生已经具备一定的观察、归纳、猜想和推理的能力.他们在小学已学习了一些几何图形的面积计算方法(包括割补、拼接),但运用面积法和割补思想来解决问题的意识和能力还不够。另外,学生普遍学习积极性较高,课堂活动参与较主动,但合作交流的能力还有待加强.教法分析:结合八年级学生和本节教材的特点,在教学中采用“问题情境————建立模型————解释应用———拓展巩固”的模式,选择引导探索法。把教学过程转化为学生亲身观察,大胆猜想,自主探究,合作交流,归纳总结的过程。学法分析:在教师的组织引导下,学生采用自主探究合作交流的研讨式学习方式,使学生真正成为学习的主人。三、教学过程设计1、创设情境,提出问题2、实验操作,模型构建3、回归生活,应用新知4、知识拓展,巩固深化5。感悟收获,布置作业(一)创设情境提出问题楼房三楼失火,消防队员赶来救火,了解到每层楼高3米,消防队员取来6。5米长的云梯,如果梯子的底部离墙基的距离是2。5米,请问消防队员能否进入三楼灭火?设计意图:以实际问题为切入点引入新课,反映了数学来源于实际生活,产生于人的需要,也体现了知识的发生过程,解决问题的过程也是一个“数学化”的过程,从而引出下面的环节。实验操作模型构建1、等腰直角三角形(数格子)2、一般直角三角形(割补)问题一:对于等腰直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面积有何关系?设计意图:这样做利于学生参与探索,利于培养学生的语言表达能力,体会数形结合的思想。问题二:对于一般的直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面积也有这个关系吗?(割补法是本节的难点,组织学生合作交流)设计意图:不仅有利于突破难点,而且为归纳结论打下基础,让学生的分析问题解决问题的能力在无形中得到提高。通过以上实验归纳总结勾股定理。设计意图:学生通过合作交流,归纳出勾股定理的雏形,培养学生抽象、概括的能力,同时发挥了学生的主体作用,体验了从特殊——一般的认知规律。回归生活应用新知让学生解决开头情景中的问题,前呼后应,增强学生学数学、用数学的意识,增加学以致用的乐趣和信心。四、知识拓展巩固深化基础题,情境题,探索题。设计意图:给出一组题目,分三个梯度,由浅入深层层练习,照顾学生的个体差异,关注学生的个性发展。知识的运用得到升华。基础题:直角三角形的一直角边长为3,斜边为5,另一直角边长为X,你可以根据条件提出多少个数学问题?你能解决所提出的问题吗?设计意图:这道题立足于双基.通过学生自己创设情境,锻炼了发散思维.情境题:小明妈妈买了一部29英寸(74厘米)的电视机。小明量了电视机的屏幕后,发现屏幕只有58厘米长和46厘米宽,他觉得一定是售货员搞错了。你同意他的想法吗?设计意图:增加学生的生活常识,也体现了数学源于生活,并用于生活。探索题:做一个长,宽,高分别为50厘米,40厘米,30厘米的木箱,一根长为70厘米的木棒能否放入,为什么?试用今天学过的知识说明。设计意图:探索题的难度相对大了些,但教师利用教学模型和学生合作交流的方式,拓展学生的思维、发展空间想象能力。五、感悟收获布置作业:这节课你的收获是什么?1、课本习题。2、搜集有关勾股定理证明的资料。板书设计探索勾股定理如果直角三角形两直角边分别为a,b,斜边为c,那么李景萍《探索勾股定理》第一课时说课稿设计说明:1、探索定理采用面积法,为学生创设一个和谐、宽松的情境,让学生体会数形结合及从特殊到一般的思想方法.2、让学生人人参与,注重对学生活动的评价,一是学生在活动中的投入程度;二是学生在活动中表现出来的思维水平、表达水平。北师大《勾股定理》教案4教材分析:如果说数学思想是解决数学问题的一首经典老歌,那么本节课蕴含的由特殊到一般的思想、数学建模的思想、转化的思想就是歌中最为活跃的音符!本节的内容是在学习了二次根式之后的教学,是在学生已经掌握了直角三角形的有关性质的基础上进行的后继学习,是中学数学几个重要定理之一。它揭示了直角三角形三条边之间的数量关系,是解直角三角形的主要根据之一,是解决四边形、圆等知识的灵魂,在实际生活中有着极其广泛的应用。勾股定理的发现、验证和应用蕴含着丰富的文化价值,在理论上占有重要地位,因此本节在教材中起着承前启后的桥梁作用。新课标下的数学教学不仅是知识的教学,更应注重能力的培养及情感的教育,因此,根据本节在教学中的地位和作用,结合初二学生不爱表现、好静不好动的特点,我确定本节教学目标如下:1、探索并利用拼图证明勾股定理。2、利用勾股定理解决简单的数学问题。3、感受数学文化,体会解决问题方法的多样性和数形结合的思想。本着课标的要求,在吃透教材的基础上,我确定本节的教学重点、难点、关键如下:勾股定理的证明和简单应用是本节的重点,用拼图的方法证明勾股定理是难点,而解决难点的关键是充分利用图形面积的各种表示方法构造恒等式。为了讲清重点、突破难点、抓住关键,使学生达到预定目标,我对教法和学法分析如下:教法分析:新课程标准强调要从学生已有的经验出发,最大限度的激发学生学习积极性,新课程下的数学教师更应是学生学习活动的组织者、引导者、合作者,因此,鉴于教材的重点和初二学生的认知水平,我以学生充分预习为前提,以学生的动手操作、讲解为中心,让学生亲历亲为,体会做数学的过程,激发学生的探索兴趣,使课堂活跃起来,提高课堂效率。运用观察法、归纳法、引导发现法、讨论法等多种教学方法相结合的形式,让学生充分展示预习成果,体验成功的快乐,为终身学习和发展打下坚实的基础。为了增大课堂容量、给学生创设高效的数学课堂,给学生提供足够从事数学活动的时间,以导学案的形式、运用多媒体辅助教学。学法分析:学法是学生再生知识的法宝,为了把学生学习过程当作认知事物的过程来解决,教学中我首先引导学生先动手操作,再合作交流,培养学生良好的学习品质和与人合作的能力;接下来,我让学生独立思考,点拨学生用特殊到一般的思想大胆偿试,水到渠成的突出勾股定理的探索这一重点,然后通过学生展示成果让学生抓住用不同的方式拼出图形,从而用不同的方式表示图形面积建立恒等式这一关健,以自己拼图操作、讲解展示预习成果突破定理证明这一难点,指导学生严谨、合理的书写格式,培养学生的逻辑思维能力和语言表达能力。为了充分调动学生的学习积极性,创设优化高效的数学课堂,我以导学案的方式循序见进的设计教学流程。以学生必读课本48—52页,选读课本55、56页的课前预习为前提,共分四个环节来进行教学1、勾股定理的探究:让学生历经量一量、算一算、想一想的由特殊到一般的数学思想引导好学生课前预习,再以检查预习成果的形式为新知的探究作好铺垫。2、勾股定理的证明:以学生拼图展示、讲解预习成果的形式完成对定理的证明。3、勾股定理的应用:以课堂练习、学生个性补充和老师适当的个性化追加的形式实现对定理的灵活应用。4、学后反思:以学生小结的形式引导学生从知识、情感两方面实现对本节内容的巩固与升华。说创新点:为了给学生营造一个和谐、民主、平等而高效的数学课堂,我以新课程标准的基本理念和总体目标为指导思想,面向全体学生,选择适当的起点和方法,充分发挥学生的主体地位与教师主导作用相统一的原则。教学中注重学生的动手操作能力的培养,化繁为简,化抽象为直观。例如我以展示预习成果为主线,以学生动手操作、讲解等直观方式代替老师画图、剪图、讲评费时费力的方式,既让每个学生都能积极的参与进来,培养学生的语言表达能力、逻辑推理能力,又达到了直观高效的效果。教学中我注重人文环境的创设,使数学课堂充满亲切、民主的气氛,例如整节课我以学生的操作、展示、讲解、个性补充为主,拉近了数学与学生的距离,激发了学生的学习兴趣;为了使不同的学生得到不同的发展,人人学有价值的数学,在教学中我创造性的使用教材,在不改变例题的本意为前提,创设身边暖房工程为情境,体现数学的生活化;以一题多变、中考题改编等形式进行练习题的层层深入,体现数学的变化美。以学生个性补充的形式促进课堂新的生成,最大限度的培养学生创新思维,使不同的人在数学上有不同的发展。本节课既做到了课程的开放,为充分发挥学生聪明智慧和创造性的思维提供了空间,又创设了具有独特教学风格的作文式数学课堂。而多媒体教学的引入更为学生提供了广阔的思考空间和时间;同时,我注重对学生进行数学文化的薰陶和数学思想的渗透,注重美育、德育与教育的三统一,如小结时由“勾股树”到“智慧树”的希望寄语。北师大《勾股定理》教案5一、教材分析(一)教材所处的地位这节课是九年制义务教育课程标准实验教科书八年级第一章第一节探索勾股定理第一课时,勾股定理是几何中几个重要定理之一,它揭示的是直角三角形中三边的数量关系。它在数学的发展中起过重要的作用,在现时世界中也有着广泛的作用。学生通过对勾股定理的学习,可以在原有的基础上对直角三角形有进一步的认识和理解。(二)根据课程标准,本课的.教学目标是:1、能说出勾股定理的内容。2、会初步运用勾股定理进行简单的计算和实际运用。3、在探索勾股定理的过程中,让学生经历“观察—猜想—归纳—验证”的数学思想,并体会数形结合和特殊到一般的思想方法。4、通过介绍勾股定理在中国古代的研究,激发学生热爱祖国,热爱祖国悠久文化的思想,激励学生发奋学习。(三)本课的教学重点:探索勾股定理本课的教学难点:以直角三角形为边的正方形面积的计算。二、教法与学法分析:教法分析:针对初二年级学生的知识结构和心理特征,本节课可选择引导探索法,由浅入深,由特殊到一般地提出问题。引导学生自主探索,合作交流,这种教学理念反映了时代精神,有利于提高学生的思维能力,能有效地激发学生的思维积极性,基本教学流程是:提出问题—实验操作—归纳验证—问题解决—课堂小结—布置作业六部分。学法分析:在教师的组织引导下,采用自主探索、合作交流的研讨式学习方式,让学生思考问题,获取知识,掌握方法,借此培养学生动手、动脑、动口的能力,使学生真正成为学习的主体。三、教学过程设计(一)提出问题:首先创设这样一个问题情境:某楼房三楼失火,消防队员赶来救火,了解到每层楼高3米,消防队员取来6.5米长的云梯,如果梯子的底部离墙基的距离是2.5米,请问消防队员能否进入三楼灭火?问题设计具有一定的挑战性,目的是激发学生的探究欲望,教师引导学生将实际问题转化成数学问题,也就是“已知一直角三角形的两边,如何求第三边?”的问题。学生会感到困难,从而教师指出学习了今天这一课后就有办法解决了。这种以实际问题为切入点引入新课,不仅自然,而且反映了数学来源于实际生活,数学是从人的需要中产生这一认识的基本观点,同时也体现了知识的发生过程,而且解决问题的过程也是一个“数学化”的过程。(二)实验操作:1、投影课本图1—1,图1—2的有关直角三角形问题,让学生计算正方形A,B,C的面积,学生可能有不同的方法,不管是通过直接数小方格的个数,还是将C划分为4个全等的等腰直角三角形来求等等,各种方法都应予于肯定,并鼓励学生用语言进行表达,引导学生发现正方形A,B,C的面积之间的数量关系,从而学生通过正方形面积之间的关系容易发现对于等腰直角三角形而言满足两直角边的平方和等于斜边的平方。这样做有利于学生参与探索,感受数学学习的过程,也有利于培养学生的语言表达能力,体会数形结合的思想。2、接着让学生思考:如果是其它一般的直角三角形,是否也具备这一结论呢?于是投影图1—3,图1—4,同样让学生计算正方形的面积,但正方形C的面积不易求出,可让学生在预先准备的方格纸上画出图形,在剪一剪,拼一拼后学生也不难发现对于一般的以整数为边长的直角三角形也有两直角边的平方和等于斜边的平方。这样设计不仅有利于突破难点,而且为归纳结论打下了基础,让学生体会到观察、猜想、归纳的思想,也让学生的分析问题和解决问题的能力在无形中得到了提高,这对后面的学习及有帮助。3、给出一个边长为0.5,1.2,1

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论