版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
黄石市市级名校2024届中考数学考前最后一卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.在Rt△ABC中,∠ACB=90°,AC=12,BC=9,D是AB的中点,G是△ABC的重心,如果以点D为圆心DG为半径的圆和以点C为圆心半径为r的圆相交,那么r的取值范围是()A.r<5 B.r>5 C.r<10 D.5<r<102.如图,⊙O与直线l1相离,圆心O到直线l1的距离OB=2,OA=4,将直线l1绕点A逆时针旋转30°后得到的直线l2刚好与⊙O相切于点C,则OC=()A.1 B.2 C.3 D.43.下列四个图形中既是轴对称图形,又是中心对称图形的是()A. B. C. D.4.如图,在△ABC中,cosB=,sinC=,AC=5,则△ABC的面积是()A. B.12 C.14 D.215.二次函数y=ax2+bx+c(a≠0)的图象如图,下列结论正确的是()A.a<0 B.b2-4ac<0 C.当-1<x<3时,y>0 D.-=16.山西有着悠久的历史,远在100多万年前就有古人类生息在这块土地上.春秋时期,山西大部分为晋国领地,故山西简称为“晋”,战国初韩、赵、魏三分晋,山西又有“三晋”之称,下面四个以“晋”字为原型的Logo图案中,是轴对称图形的共有()A. B. C. D.7.如图,EF过▱ABCD对角线的交点O,交AD于E,交BC于F,若▱ABCD的周长为18,,则四边形EFCD的周长为A.14 B.13 C.12 D.108.把不等式组的解集表示在数轴上,正确的是()A. B.C. D.9.若关于x的不等式组无解,则m的取值范围()A.m>3 B.m<3 C.m≤3 D.m≥310.如图所示的几何体,它的左视图是()A. B. C. D.二、填空题(共7小题,每小题3分,满分21分)11.若一个多边形每个内角为140°,则这个多边形的边数是________.12.若分式的值为正数,则x的取值范围_____.13.如图,在△ABC中,DE∥BC,,则=_____.14.现有三张分别标有数字2、3、4的卡片,它们除了数字外完全相同,把卡片背面朝上洗匀,从中任意抽取一张,将上面的数字记为a(不放回);从剩下的卡片中再任意抽取一张,将上面的数字记为b,则点(a,b)在直线图象上的概率为__.15.如图,中,,则__________.16.甲乙两人进行飞镖比赛,每人各投5次,所得平均环数相等,其中甲所得环数的方差为15,乙所得环数如下:0,1,5,9,10,那么成绩较稳定的是_____(填“甲”或“乙”).17.一组数据:1,2,a,4,5的平均数为3,则a=_____.三、解答题(共7小题,满分69分)18.(10分)如图,⊙O是△ABC的外接圆,AE平分∠BAC交⊙O于点E,交BC于点D,过点E做直线l∥BC.(1)判断直线l与⊙O的位置关系,并说明理由;(2)若∠ABC的平分线BF交AD于点F,求证:BE=EF;(3)在(2)的条件下,若DE=4,DF=3,求AF的长.19.(5分)计算:2cos30°+--()-220.(8分)画出二次函数y=(x﹣1)2的图象.21.(10分)如图,四边形ABCD的四个顶点分别在反比例函数y=mx与y=n(1)当m=1,n=20时.①若点P的纵坐标为2,求直线AB的函数表达式.②若点P是BD的中点,试判断四边形ABCD的形状,并说明理由.(2)四边形ABCD能否成为正方形?若能,求此时m,n之间的数量关系;若不能,试说明理由.22.(10分)某县教育局为了丰富初中学生的大课间活动,要求各学校开展形式多样的阳光体育活动.某中学就“学生体育活动兴趣爱好”的问题,随机调查了本校某班的学生,并根据调查结果绘制成如下的不完整的扇形统计图和条形统计图:(1)在这次调查中,喜欢篮球项目的同学有______人,在扇形统计图中,“乒乓球”的百分比为______%,如果学校有800名学生,估计全校学生中有______人喜欢篮球项目.(2)请将条形统计图补充完整.(3)在被调查的学生中,喜欢篮球的有2名女同学,其余为男同学.现要从中随机抽取2名同学代表班级参加校篮球队,请直接写出所抽取的2名同学恰好是1名女同学和1名男同学的概率.23.(12分)如图,抛物线与x轴交于点A,B,与轴交于点C,过点C作CD∥x轴,交抛物线的对称轴于点D,连结BD,已知点A坐标为(-1,0).求该抛物线的解析式;求梯形COBD的面积.24.(14分)某文教店老板到批发市场选购A、B两种品牌的绘图工具套装,每套A品牌套装进价比B品牌每套套装进价多2.5元,已知用200元购进A种套装的数量是用75元购进B种套装数量的2倍.求A、B两种品牌套装每套进价分别为多少元?若A品牌套装每套售价为13元,B品牌套装每套售价为9.5元,店老板决定,购进B品牌的数量比购进A品牌的数量的2倍还多4套,两种工具套装全部售出后,要使总的获利超过120元,则最少购进A品牌工具套装多少套?
参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、D【解题分析】延长CD交⊙D于点E,∵∠ACB=90°,AC=12,BC=9,∴AB==15,∵D是AB中点,∴CD=,∵G是△ABC的重心,∴CG==5,DG=2.5,∴CE=CD+DE=CD+DF=10,∵⊙C与⊙D相交,⊙C的半径为r,∴,故选D.【题目点拨】本题考查了三角形的重心的性质、直角三角形斜边中线等于斜边一半、两圆相交等,根据知求出CG的长是解题的关键.2、B【解题分析】
先利用三角函数计算出∠OAB=60°,再根据旋转的性质得∠CAB=30°,根据切线的性质得OC⊥AC,从而得到∠OAC=30°,然后根据含30度的直角三角形三边的关系可得到OC的长.【题目详解】解:在Rt△ABO中,sin∠OAB===,∴∠OAB=60°,∵直线l1绕点A逆时针旋转30°后得到的直线l1刚好与⊙O相切于点C,∴∠CAB=30°,OC⊥AC,∴∠OAC=60°﹣30°=30°,在Rt△OAC中,OC=OA=1.故选B.【题目点拨】本题考查了直线与圆的位置关系:设⊙O的半径为r,圆心O到直线l的距离为d,则直线l和⊙O相交⇔d<r;直线l和⊙O相切⇔d=r;直线l和⊙O相离⇔d>r.也考查了旋转的性质.3、D【解题分析】
根据轴对称图形与中心对称图形的概念求解.【题目详解】A、是轴对称图形,不是中心对称图形,故此选项错误;B、是轴对称图形,不是中心对称图形,故此选项错误;C、是轴对称图形,不是中心对称图形,故此选项错误;D、是轴对称图形,也是中心对称图形,故此选项正确.故选D.【题目点拨】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.4、A【解题分析】
根据已知作出三角形的高线AD,进而得出AD,BD,CD,的长,即可得出三角形的面积.【题目详解】解:过点A作AD⊥BC,∵△ABC中,cosB=,sinC=,AC=5,
∴cosB==,
∴∠B=45°,
∵sinC===,
∴AD=3,
∴CD==4,
∴BD=3,
则△ABC的面积是:×AD×BC=×3×(3+4)=.
故选:A.【题目点拨】此题主要考查了解直角三角形的知识,作出AD⊥BC,进而得出相关线段的长度是解决问题的关键.5、D【解题分析】试题分析:根据二次函数的图象和性质进行判断即可.解:∵抛物线开口向上,∴∴A选项错误,∵抛物线与x轴有两个交点,∴∴B选项错误,由图象可知,当-1<x<3时,y<0∴C选项错误,由抛物线的轴对称性及与x轴的两个交点分别为(-1,0)和(3,0)可知对称轴为即-=1,∴D选项正确,故选D.6、D【解题分析】
根据轴对称图形的概念求解.【题目详解】A、不是轴对称图形,故此选项错误;B、不是轴对称图形,故此选项错误;C、不是轴对称图形,故此选项错误;D、是轴对称图形,故此选项正确.
故选D.【题目点拨】此题主要考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.7、C【解题分析】
∵平行四边形ABCD,∴AD∥BC,AD=BC,AO=CO,∴∠EAO=∠FCO,∵在△AEO和△CFO中,,∴△AEO≌△CFO,∴AE=CF,EO=FO=1.5,∵C四边形ABCD=18,∴CD+AD=9,∴C四边形CDEF=CD+DE+EF+FC=CD+DE+EF+AE=CD+AD+EF=9+3=12.故选C.【题目点拨】本题关键在于利用三角形全等,解题关键是将四边形CDEF的周长进行转化.8、B【解题分析】
首先解出各个不等式的解集,然后求出这些解集的公共部分即可.【题目详解】解:由x﹣2≥0,得x≥2,由x+1<0,得x<﹣1,所以不等式组无解,故选B.【题目点拨】解不等式组时要注意解集的确定原则:同大取大,同小取小,大小小大取中间,大大小小无解了.9、C【解题分析】
根据“大大小小找不着”可得不等式2+m≥2m-1,即可得出m的取值范围.【题目详解】,由①得:x>2+m,由②得:x<2m﹣1,∵不等式组无解,∴2+m≥2m﹣1,∴m≤3,故选C.【题目点拨】考查了解不等式组,根据求不等式的无解,遵循“大大小小解不了”原则得出是解题关键.10、A【解题分析】
从左面观察几何体,能够看到的线用实线,看不到的线用虚线.【题目详解】从左边看是等宽的上下两个矩形,上边的矩形小,下边的矩形大,两矩形的公共边是虚线,
故选:A.【题目点拨】本题主要考查的是几何体的三视图,熟练掌握三视图的画法是解题的关键.二、填空题(共7小题,每小题3分,满分21分)11、九【解题分析】
根据多边形的内角和定理:180°•(n-2)进行求解即可.【题目详解】由题意可得:180°(n−2)=140°n,解得n=9,故多边形是九边形.故答案为9.【题目点拨】本题考查了多边形的内角和定理,解题的关键是熟练的掌握多边形的内角和定理.12、x>1【解题分析】试题解析:由题意得:>0,∵-6<0,∴1-x<0,∴x>1.13、【解题分析】
先利用平行条件证明三角形的相似,再利用相似三角形面积比等于相似比的平方,即可解题.【题目详解】解:∵DE∥BC,,∴,由平行条件易证△ADE△ABC,∴S△ADE:S△ABC=1:9,∴=.【题目点拨】本题考查了相似三角形的判定和性质,中等难度,熟记相似三角形的面积比等于相似比的平方是解题关键.14、【解题分析】
根据题意列出图表,即可表示(a,b)所有可能出现的结果,根据一次函数的性质求出在图象上的点,即可得出答案.【题目详解】画树状图得:
∵共有6种等可能的结果(2,3),(2,4),(3,2),(3,4),(4,2),(4,3),在直线图象上的只有(3,2),
∴点(a,b)在图象上的概率为.【题目点拨】本题考查了用列表法或树状图法求概率.注意画树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意此题属于不放回实验.15、17【解题分析】∵Rt△ABC中,∠C=90°,∴tanA=,∵,∴AC=8,∴AB==17,故答案为17.16、甲.【解题分析】乙所得环数的平均数为:=5,S2=[+++…+]=[++++]=16.4,甲的方差<乙的方差,所以甲较稳定.故答案为甲.点睛:要比较成绩稳定即比方差大小,方差越大,越不稳定;方差越小,越稳定.17、1【解题分析】依题意有:(1+2+a+4+5)÷5=1,解得a=1.故答案为1.三、解答题(共7小题,满分69分)18、(1)直线l与⊙O相切;(2)证明见解析;(3)214【解题分析】试题分析:(1)连接OE、OB、OC.由题意可证明BE=(2)先由角平分线的定义可知∠ABF=∠CBF,然后再证明∠CBE=∠BAF,于是可得到∠EBF=∠EFB,最后依据等角对等边证明BE=EF即可;(3)先求得BE的长,然后证明△BED∽△AEB,由相似三角形的性质可求得AE的长,于是可得到AF的长.试题解析:(1)直线l与⊙O相切.理由如下:如图1所示:连接OE、OB、OC.∵AE平分∠BAC,∴∠BAE=∠CAE.∴BE=∴∠BOE=∠COE.又∵OB=OC,∴OE⊥BC.∵l∥BC,∴OE⊥l.∴直线l与⊙O相切.(2)∵BF平分∠ABC,∴∠ABF=∠CBF.又∵∠CBE=∠CAE=∠BAE,∴∠CBE+∠CBF=∠BAE+∠ABF.又∵∠EFB=∠BAE+∠ABF,∴∠EBF=∠EFB.∴BE=EF.(3)由(2)得BE=EF=DE+DF=1.∵∠DBE=∠BAE,∠DEB=∠BEA,∴△BED∽△AEB.∴DEBE=BEAE,即∴AF=AE﹣EF=494﹣1=21考点:圆的综合题.19、5【解题分析】
根据实数的计算,先把各数化简,再进行合并即可.【题目详解】原式==5【题目点拨】此题主要考查实数的计算,解题的关键是熟知特殊三角函数的化简与二次根式的运算.20、见解析【解题分析】
首先可得顶点坐标为(1,0),然后利用对称性列表,再描点,连线,即可作出该函数的图象.【题目详解】列表得:x…﹣10123…y…41014…如图:.【题目点拨】此题考查了二次函数的图象.注意确定此二次函数的顶点坐标是关键.21、(1)①直线AB的解析式为y=﹣12【解题分析】分析:(1)①先确定出点A,B坐标,再利用待定系数法即可得出结论;②先确定出点D坐标,进而确定出点P坐标,进而求出PA,PC,即可得出结论;(2)先确定出B(1,m4),进而得出A(1-t,m4+t),即:(1-t)(m4详解:(1)①如图1,∵m=1,∴反比例函数为y=4x∴B(1,1),当y=2时,∴2=4x∴x=2,∴A(2,2),设直线AB的解析式为y=kx+b,∴2k+b=∴k=∴直线AB的解析式为y=-12②四边形ABCD是菱形,理由如下:如图2,由①知,B(1,1),∵BD∥y轴,∴D(1,5),∵点P是线段BD的中点,∴P(1,3),当y=3时,由y=4x得,x=4由y=20x得,x=20∴PA=1-43=83,PC=203∴PA=PC,∵PB=PD,∴四边形ABCD为平行四边形,∵BD⊥AC,∴四边形ABCD是菱形;(2)四边形ABCD能是正方形,理由:当四边形ABCD是正方形,∴PA=PB=PC=PD,(设为t,t≠0),当x=1时,y=mx=m∴B(1,m4∴A(1-t,m4∴(1-t)(m4∴t=1-m4∴点D的纵坐标为m4+2t=m4+2(1-m4∴D(1,8-m4∴1(8-m4∴m+n=2.点睛:此题是反比例函数综合题,主要考查了待定系数法,平行四边形的判定,菱形的判定和性质,正方形的性质,判断出四边形ABCD是平行四边形是解本题的关键.22、(1)5,20,80;(2)图见解析;(3).【解题分析】【分析】(1)根据喜欢跳绳的人数以及所占的比例求得总人数,然后用总人数减去喜欢跳绳、乒乓球、其它的人数即可得;(2)用乒乓球的人数除以总人数即可得;(3)用800乘以喜欢篮球人数所占的比例即可得;(4)根据(1)中求得的喜欢篮球的人数即可补全条形图;(5)画树状图可得所有可能的情况,根据树状图求得2名同学恰好是1名女同学和1名男同学的结果,根据概率公式进行计算即可.【题目详解】(1)调查的总人数为20÷40%=50(人),喜欢篮球项目的同学的人数=50﹣20﹣10﹣15=5(人);(2)“乒乓球”的百分比==20%;(3)800×=80,所以估计全校学生中有80人喜欢篮球项目;(4)如图所示,(5)画树状图为:共有20种等可能的结果数,其中所抽取的2名同学恰好是1名女同学和1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 某水电站增容技改综合项目可行性研究报告
- 请外援打篮球协议书
- 山头租赁合同
- 测量相关实习心得5篇
- 劳务公司管理办法:安全生产管理
- 旅行社计调员聘用合同样本
- 招投标项目投标策略报告
- 商务楼消防设施改造合同
- 租赁车辆安全带使用规定
- 医疗机构安全红线管理办法
- 2024年秋新教材北师大版一年级数学上册全册课件
- 加气站质量管理手册样本
- 2019版外研社高中英语必选择性必修一-四单词
- 古树名木养护复壮技术规范
- 2025年日历英文版纵向排版周一开始
- S7-1200PLC技术及应用 课件 项目17 步进电机控制
- 《生物技术制药》课程介绍与教学大纲
- 《现代农业技术推广》课件-第七组 农民问题专题调研
- 第30课 家居收纳技巧 课件 2023-2024学年苏教版初中劳动技术七年级上册
- 2024中国一汽校园招聘1000+岗位高频考题难、易错点模拟试题(共500题)附带答案详解
- GB/T 19533-2024汽车用压缩天然气钢瓶定期检验与评定
评论
0/150
提交评论