




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届广东省汕头市汕头市聿怀初级中学八年级数学第一学期期末经典试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.如图,△ABC的外角∠ACD的平分线CP与∠ABC平分线BP交于点P,若∠BPC=40°,则∠CAP的度数是()A.30°; B.40°; C.50°; D.60°.2.下列几组数中,能组成直角三角形的是()A. B. C. D.3.若(x-3)(x+5)是x2+px+q的因式,则q为()A.-15 B.-2 C.8 D.24.若分式,则的值为()A. B. C. D.5.在平面直角坐标系中,点A'(2,﹣3)可以由点A(﹣2,3)通过两次平移得到,正确的是()A.先向左平移4个单位长度,再向上平移6个单位长度B.先向右平移4个单位长度,再向上平移6个单位长度C.先向左平移4个单位长度,再向下平移6个单位长度D.先向右平移4个单位长度,再向下平移6个单位长度6.若一个五边形的四个内角都是,那么第五个内角的度数为()A. B. C. D.7.为迎接我市创建全国文明城市活动,环卫处投资20万元购买并投放一批型“垃圾清扫车”,因为清扫车需求量增加,计划继续投放型清扫车,型清扫车的投放数量与型清扫车的投放数量相同,投资总费用减少,购买型清扫车的单价比购买型清扫车的单价少50元,则型清扫车每辆车的价格是多少元?设型清扫车每辆车的价格为元,根据题意,列方程正确的是()A. B.C. D.8.一个三角形的两边长分别是和,则第三边的长可能是()A. B. C. D.9.如图,在△PAB中,PA=PB,M,N,K分别是PA,PB,AB上的点,且AM=BK,BN=AK,若∠MKN=42°,则∠P的度数为()A.44° B.66° C.96° D.92°10.已知,则下列不等式中正确的是()A. B. C. D.二、填空题(每小题3分,共24分)11.根据数量关系:的5倍加上1是正数,可列出不等式:__________.12.如图,已知AB⊥CD,垂足为B,BC=BE,若直接应用“HL”判定△ABC≌△DBE,则需要添加的一个条件是__________.13.清代诗人袁枚的一首诗《苔》中写到:“白日不到处,青春恰自来.苔花如米小,也学牡丹开”,若苔花的花粉直径约为0.0000084米,用科学记数法表示为______米.14.点A(2,-3)关于x轴对称的点的坐标是______.15.若等腰三角形的顶角为,则它腰上的高与底边的夹角是________度.16.如图,,,垂足分别为,,,,点为边上一动点,当_______时,形成的与全等.17.若关于x的不等式组有4个整数解,那么a的取值范围是_____.18.我国首艘国产航母山东舰于2019年12月17日下午4时交付海军,山东舰的排水量达到65000吨,请将65000精确到万位,并用科学记数法表示______.三、解答题(共66分)19.(10分)如图所示,三点在同一条直线上,和为等边三角形,连接.请在图中找出与全等的三角形,并说明理由.20.(6分)如图,点B,C,D在同一条直线上,,是等边三角形,若,,求的度数;求AC长.21.(6分)如图,点、都在线段上,且,,,与相交于点.(1)求证:;(2)若,,求的长.22.(8分)在平面直角坐标系中,一次函数yx+4的图象与x轴和y轴分别交于A、B两点.动点P从点A出发,在线段AO上以每秒1个单位长度的速度向点O作匀速运动,到达点O即停止运动.其中A、Q两点关于点P对称,以线段PQ为边向上作正方形PQMN.设运动时间为秒.如图①.(1)当t=2秒时,OQ的长度为;(2)设MN、PN分别与直线yx+4交于点C、D,求证:MC=NC;(3)在运动过程中,设正方形PQMN的对角线交于点E,MP与QD交于点F,如图2,求OF+EN的最小值.23.(8分)某商场第一次用元购进某款机器人进行销售,很快销售一空,商家又用元第二次购进同款机器人,所购进数量是第一次的倍,但单价贵了元.(1)求该商家第一次购进机器人多少个?(2)若所有机器人都按相同的标价销售,要求全部销售完毕的利润率不低于不考虑其他因素,那么每个机器人的标价至少是多少元?24.(8分)如图,中,,,,若点从点出发以每秒的速度向点运动,设运动时间为秒.(1)若点恰好在的角平分线上,求出此时的值;(2)若点使得时,求出此时的值.25.(10分)因雾霾天引发的汽车尾气污染备受关注,由此汽车限号行驶也成为人们关注的焦点,限行期间为方便市民出行,某路公交车每天比原来的运行增加15车次.经调研得知,原来这路公交车平均每天共运送乘客5600人,限行期间这路公交车平均每天共运送乘客8000人,且平均每车次运送乘客与原来的数量基本相同,问限行期间这路公交车每天运行多少车次?26.(10分)计算:(1).(2).
参考答案一、选择题(每小题3分,共30分)1、C【解析】过点P作PE⊥BD于点E,PF⊥BA于点F,PH⊥AC于点H,∵CP平分∠ACD,BP平分∠ABC,∴PE=PH,PE=PF,∠PCD=∠ACD,∠PBC=∠ABC,∴PH=PF,∴点P在∠CAF的角平分线上,∴AP平分∠FAC,∴∠CAP=∠CAF.∵∠PCD=∠BPC+∠PBC,∴∠ACD=2∠BPC+2∠PBC,又∵∠ACD=∠ABC+∠BAC,∠ABC=2∠PBC,∠BPC=40°,∴∠ABC+∠BAC=∠ABC+80°,∴∠BAC=80°,∴∠CAF=180°-80°=100°,∴∠CAP=100°×=50°.故选C.点睛:过点P向△ABC三边所在直线作出垂线段,这样综合应用“角平分线的性质与判定”及“三角形外角的性质”即可结合已知条件求得∠CAP的度数.2、C【分析】先求出两小边的平方和,再求出最大边的平方,看看是否相等即可.【详解】解:A、,以为三边的三角形不能组成直角三角形,故本选项不符合题意;B、,以为三边的三角形不能组成直角三角形,故本选项不符合题意;C、,以为三边的三角形能组成直角三角形,故本选项符合题意;D、,以为三边的三角形不能组成直角三角形,故本选项不符合题意;故选:C.【点睛】本题考查的是勾股定理的逆定理,熟记勾股定理的逆定理的内容以及正确计算是解题的关键.3、A【分析】直接利用多项式乘法或十字相乘法得出q的值.【详解】解:∵(x−3)(x+5)是x2+px+q的因式,∴q=−3×5=−1.故选A.【点睛】此题主要考查了十字相乘法分解因式,正确得出q与因式之间关系是解题关键.4、D【分析】根据分子为零且分母不为零分式的值为零,可得答案.【详解】解:由题意,得且,解得,故选:D.【点睛】本题考查了分式值为零的条件,利用分子为零且分母不为零得出且是解题关键.5、D【解析】利用点A与点的横纵坐标的关系确定平移的方向和平移的距离即可.【详解】把点先向右平移4个单位,再向下平移6个单位得到点.故选D.【点睛】本题考查了坐标与图形变化平移:在平面直角坐标系内,把一个图形各个点的横坐标都加上或减去一个整数a,相应的新图形就是把原图形向右或向左平移a个单位长度;如果把它各个点的纵坐标都加或减去一个整数a,相应的新图形就是把原图形向上或向下平移a个单位长度.掌握平移规律是解题的关键.6、C【分析】根据多边形的内角和计算出内角和,减去前四个内角即可得到第五个内角的度数【详解】第五个内角的度数为,故选:C.【点睛】此题考查多边形的内角和定理,熟记多边形的内角和公式并熟练解题是关键.7、C【分析】设B型清扫车每辆车的价格为元,则A型清扫车每辆车的价格为(x+50)元,依据“型清扫车的投放数量与型清扫车的投放数量相同,”列出关于x的方程,即可得到答案.【详解】解:设B型清扫车每辆车的价格为元,则A型清扫车每辆车的价格为(x+50)元,根据题意,得:;故选:C.【点睛】考查了由实际问题抽象出分式方程,找到关键描述语,找到合适的等量关系是解决问题的关键.8、C【分析】根据三角形任意两边之和大于第三边,任意两边之差小于第三边求出第三边的取值范围,即可求解..【详解】设第三边为x,由三角形三条边的关系得1-2<x<1+2,∴2<x<6,∴第三边的长可能是1.故选C.【点睛】本题考查了三角形三条边的关系,熟练掌握三角形三条边的关系是解答本题的关键.9、C【分析】根据等腰三角形的性质得到∠A=∠B,证明△AMK≌△BKN,得到∠AMK=∠BKN,根据三角形的外角的性质求出∠A=∠MKN=42°,根据三角形内角和定理计算即可.【详解】解:∵PA=PB,∴∠A=∠B,在△AMK和△BKN中,,∴△AMK≌△BKN,∴∠AMK=∠BKN,∵∠MKB=∠MKN+∠NKB=∠A+∠AMK,∴∠A=∠MKN=42°,∴∠P=180°﹣∠A﹣∠B=96°,故选C.【点睛】此题主要考查利用等腰三角形的性质判定三角形全等,以及三角形的外教性质和内角和定理的运用,熟练掌握,即可解题.10、D【分析】根据不等式的性质解答即可.【详解】A.-2a<-2b,故该项错误;B.,故该项错误;C.2-a<2-b,故该项错误;D.正确,故选:D.【点睛】此题考查不等式的性质,熟记性质并熟练解题是关键.二、填空题(每小题3分,共24分)11、【分析】问题中的“正数”是关键词语,将它转化为数学符号即可.【详解】题中“x的5倍加上1”表示为:“正数”就是的5倍加上1是正数,可列出不等式:故答案为.【点睛】用不等式表示不等关系是研究不等式的基础,在表示时,一定要抓住关键词语,弄清不等关系,把文字语言和不等关系转化为用数学符号表示的不等式.12、AC=DE【解析】用“HL”判定△ABC≌△DBE,已知BC=BE,再添加斜边DE=AC即可.13、8.4×10-6【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.0000084=8.4×10-6,故答案为:8.4×10-6.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.14、(2,3)【分析】根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”解答.【详解】解:点A(2,-3)关于x轴对称的点的坐标为(2,3).故答案为:(2,3).【点睛】本题考查了关于x轴,y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数:(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.15、1【分析】已知给出了等腰三角形的顶角为100°,要求腰上的高与底边的夹角可以根据等腰三角形的性质:等腰三角形的一腰上的高与底边的夹角等于顶角的一半求解.【详解】∵等腰三角形的顶角为100°∴根据等腰三角形的性质:等腰三角形的一腰上的高与底边的夹角等于顶角的一半;∴高与底边的夹角为1°.故答案为1.【点睛】本题考查了等腰三角形的性质:等腰三角形的一腰上的高与底边的夹角等于顶角的一半;作为填空题,做题时可以应用一些正确的命题来求解.16、1【分析】当BP=1时,Rt△ABP≌Rt△PCD,由BC=6可得CP=4,进而可得AB=CP,BP=CD,再结合AB⊥BC、DC⊥BC可得∠B=∠C=90°,可利用SAS判定△ABP≌△PCD.【详解】解:当BP=1时,Rt△ABP≌Rt△PCD,∵BC=6,BP=1,∴PC=4,∴AB=CP,∵AB⊥BC、DC⊥BC,∴∠B=∠C=90°,在△ABP和△PCD中,∴△ABP≌△PCD(SAS),故答案为:1.【点睛】本题考查了全等三角形的判定,掌握全等三角形的判定方法(即SSS、SAS、ASA、AAS和HL)是解题的关键.17、【分析】不等式组整理后,根据4个整数解确定出a的范围即可.【详解】解:不等式组整理得:,
解得:1<x<-a-2,
由不等式组有4个整数解,得到整数解为2,3,4,5,
∴5<-a-2≤6,
解得:-8≤a<-7,
故答案为:-8≤a<-7【点睛】此题考查了一元一次不等式组的整数解,熟练掌握运算法则是解本题的关键.18、【分析】首先把65000精确到万位,然后根据:用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,判断出用科学记数法表示是多少即可.【详解】65000≈70000,
70000=7×1.
故答案为:7×1.【点睛】本题主要考查了用科学记数法和近似数.一般形式为a×10n,其中1≤|a|<10,确定a与n的值是解题的关键.三、解答题(共66分)19、△ACD≌△BCE,理由见解析.【分析】由题意根据全等三角形的判定与性质结合等边三角形的性质从而证明△ACD≌△BCE即可.【详解】解:△ACD≌△BCE,理由如下:∵△ABC和△CDE是等边三角形,∴AC=BC,CD=CE,∠ACB=∠ECD=60°,∵∠BCE=180°-∠ECD=120°,∠ACD=180°-∠ACB=120°,∴∠BCE=∠ACD,在△ACD和△BCE中,,∴△ACD≌△BCE.【点睛】本题考查了全等三角形的判定与性质的运用,解答时结合等边三角形的性质的运用证明三角形全等是解答的关键.20、(1)60°;(2)3.【解析】由等边三角形的性质可得,,,可证≌,可得,可得的度数;由全等三角形的性质和等边三角形的性质可求AC的长.【详解】解:,是等边三角形
,,,
,且,,
≌
≌
,
,【点睛】考查了全等三角形判定和性质,等边三角形的性质,熟练运用全等三角形的判定和性质解决问题是本题的关键.21、(1)见解析;(2)7【分析】(1)根据“SSS”证明△ACE≌△BDF即可;(2)根据全等三角形对应角相等得到∠ACE=∠BDF,根据等角对等边得到DG=CG,然后根据线段的和差即可得出结论.【详解】∵,∴,∴.在与中,∵,∴;(2)由(1)得:,∴,∴,∴.【点睛】本题考查了全等三角形的判定与性质以及等腰三角形的判定.证明△ACE≌△BDF是解答本题的关键.22、(1)2;(2)证明见解析;(3).【分析】(1)解方程得到OA=1,由t=2,于是得到结论;
(2)根据AP=PQ=t,得到OQ=1-2t,根据正方形的性质得到PQ=QM=MN=PN=t,求得M(1-2t,t),N(1-t,t),C(1-t,t),求得CM=(1-t)-(1-2t)=t,CN=(1-t)-(1-t)=t,于是得到结论;
(3)作矩形NEFK,则EN=FK,推出当O,F,K三点共线时,OF+EN=OF+FK的值最小,如图,作OH⊥QN于H,解直角三角形即可得到结论.【详解】(1)在yx+4中,令y=0,得x=1,∴OA=1.∵t=2,∴AP=PQ=2,∴OQ=1﹣2﹣2=2.故答案为:2;(2)∵AP=PQ=t,∴OQ=1﹣2t.∵四边形PQMN是正方形,∴PQ=QM=MN=PN=t,∴M(1﹣2t,t),N(1﹣t,t),C(1t,t),∴CM=(1t)﹣(1﹣2t)t,CN=(1﹣t)﹣(1t)t,∴CM=CN;(3)作矩形NEFK,则EN=FK.∵OF+EN=OF+FK,∴当O,F,K三点共线时,OF+EN=OF+FK的值最小,如图,作OH⊥QN于H,在等腰直角三角形PQN中,∵PQ=t,∴QNt,∴HN=QN﹣QHt﹣(t﹣3)=3,∴OF+EN的最小值为:HE+EN=HN=3.【点睛】本题考查了一次函数的综合题,正方形的性质,矩形的性质,最短路线问题,正确的作出图形是解题的关键.23、(1)该商家第一次购进机器人1个;(2)每个机器人的标价至少是140元.【分析】(1)设该商家第一次购进机器人个,根据“所购进数量是第一次的倍,但单价贵了元”列出分式方程解答即可;(2)设每个机器人的标价是元,根据“全部销售完毕的利润率不低于”列出不等式解答即可.【详解】解:(1)设该商家第一次购进机器人个,依题意得:+10=解得=1.经检验=1是原方程的解.答:该商家第一次购进机器人1个.(2)设每个机器人的标价是元.则依题意得:解得.答:每个机器人的标价至少是140元.【点睛】本题考查了分式方程与实际问题,不等式与实际问题相结合,解题的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 滑雪场地建设与维护合同书
- 深圳市冷冻水产品购销合同
- 重大突破:中国与尼日尔签订基础设施建设项目合同
- 正式婚后财产归属合同样本
- 设备采购与租赁合同样本
- 社区卫生服务中心药师聘用合同范本
- 建筑工程总承包合同中新防水工程条款
- 紧急设备配送及维护合同
- 楼盘分销代理合同范本
- 卫浴产品标准制定与质量认证考核试卷
- 前庭功能锻炼科普知识讲座
- 供应链战略布局与区域拓展案例
- 上海话培训课件
- 注塑车间绩效考核方案
- 初中英语阅读理解专项练习26篇(含答案)
- 诵读经典传承文明课件
- 高中数学选择性必修3 教材习题答案
- 智能语音技术与应用-基于Python实现(高职)全套教学课件
- 北师大版二年级下册数学第一单元 除法教案
- 2024年儿童托管行业分析报告及未来发展趋势
- 野生动植物保护
评论
0/150
提交评论