版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
UsingAdvancedDesignSystemtoDesignanMMICAmplifier
ApplicationNoteNumber1462
AgilentEEsofEDA
PAGE
10
PAGE
11
Contents
Introduction 3
Two-StageMMICAmplifierDesign 5
Branch-LineCouplerDesign 16
Conclusion 29
Appendixes
AppendixA–UsingtheAdvancedModelComposer
toCreateaLibraryofInductorModels 30
AppendixB–RunningtheDesignRuleChecker 37
GeneralReferencesonBalancedAmplifiers
"MicrowavesandRFCircuits:Analysis,Synthesi,s"MaxW.Medley,ArtechHouse,1993,pp509-541.
"FoundationsforMicrostripCirc,u"itDesign
T.C.Edwards,JohnWileyandSons,1981,pp.242-244.
andDesigns
Introduction
TherearemanydesignstepsrequiredforthedevelopmentandmanufactureofMMICcircuits,asillustratedintheMMICDesignFlow.AdvancedDesignSystem(ADS)isacentralpartofthecompleteMMICdesignflow,andisusedthroughoutthisprocess.Thisapplicationnoteillustrates,throughthedesignofanMMICamplifier,severalofthecommonproblemsfacedindesigning,simulating,andproducingaphysicallayoutofanMMICcircuit,aswellasthevalidationstepsthatareneededtoverifythatthephysicallayoutstillproducesthedesiredresult.ItisbeyondthescopeofthisnotetodescribeallpossibledesignspecificationsforanMMICcircuit,butitdoesincludeenoughspecificationanddesignstepstoaddressmanycommondesignchallenges.
Thefollowingsectionsgiveastep-bystepdescriptionofa0.5-Watt,10-GHz,narrow-bandamplifierona100-µmGaAssubstrate.Theexamplefilesthatareusedhere($HPEESOF_DIR/examples/MW_Ckts/MMIC_Amp_prjandMMIC_AmpEM_Sims_prj)
areincludedwiththeADS2003Asoftware.Designanddatadisplayfilenamesfromtheexamplesarereferencedthroughout.
TheseexampledesignsusecomponentsfromagenericdesignkitthatisprovidedwithADS2003A($HPEESOF_DIR/examples/DesignKit/DemoKit.)Themodelsforthesecomponentsdonotcorrespondtoanyspecificfoundryprocess,butarerepresentativeofdesignkitsavailablefrommanyfoundries.
Althoughthedevelopmentofthegenericdesignkitisoutsidethescopeofthisapplicationnote,itisdocumentedintheADS2003Amanual,titledDesignKitDevelopment.Thismanualprovidesinstructionsthatguidefoundriesindevelopingtheirowndesignkits.
Theamplifierdesignprocessdependsonanumberoffactors,includingdesired
specifications,availabilityofdevicemodels,designerpreference,andmore.Thisappli-cationnotedescribesoneofmanypotentialsequences.Weassumethattwostagesofamplificationwillberequired:anoutputstageforpowerandaninputstagetoattainsufficientgain.Thedesignisabalancedamplifier,consistingoftwoparallel,two-stageamplifiers,withbranch-linecouplersattheinputandoutputimplementedaslumpedelementequivalentcircuits,tosplitthesignalattheinputandrecombineitat
theoutputafteramplification.
Figure1showsablockdiagramofthebalancedamplifiertopology.Figure2outlineshowtheimpedancestopresenttothedeviceswerechosen.
Thedesignflowbeginswithseveralsimulationstepsandproceedswithphysicaldesignsteps,withsomesimulationsforverificationofthephysicaldesign.Threemaindesigntasksarerequiredtocompletetheamplifier:designofthefirst-stage(preamplifier),designofthesecondstage(poweramplifier),anddesignofthe
branch-linecouplers.
1_0
Input
0.707_0
3-dB
coupler
3-dB
coupler
0.707_90
Output
Inputmatching
1stFETwith
stabilization
Interstagematching
2nd Output
FET matching
Figure1.Balancedamplifierblockdiagram,utilizingtwo,two-stageamplifiersinparallel.
(a)
(d)
1stFETwith
stabilization
2ndFET
(b)
(c)
Figure2.Choosingimpedances.(a)ChoosesourceZforminimumnoisefigure,aslongasgainremainsreasonable.(b)ChooseloadZforconjugatematching,afterchoosingsourceZ(althoughaslightmismatchwasfoundtogiveahigher1-dBgaincompressionoutputpower).(c)ChoosesourceZforconjugatematching,afterchoosingloadZ.(d)ChooseloadZformaximumpowerdelivered.
Two-StageMMICAmplifierDesign
Thissectionoutlinesthegeneralstepsfortwo-stageMMICamplifierdesign.
Selectanactivedevice.
Thiswilldependonthespecificationsyouareattemptingtomeet(suchasfrequency,power,andnoise),andthedevicesofferedbyaparticularfoundry.TheDemoKithasonlyonedevice,aHEMT(highelectronmobilitytransistor),soaselectionprocessisnotrequired.
Idealbias–first-stage
Chooseabiaspointtomaximizethetransconductance,Gm,whichshouldalsomaximizethegainofthefirst-stagedevice.TheFET_Gm_Calcsschematic,showninFigure3,simulatestheI-VcurvesofthedeviceandcalculatesGmateachbiaspointasafunctionoftheslopeoftheIDS-versus-VGScurve.
TheplotinFigure4indicatesthatbiasingVGStoabout–0.15VshouldmaximizeGm.TheAmplifierDesignGuidehasanupdatedversionofthissimulationsetup,underDesignGuide>Amplifier>DCandBiasPointSimulations>FETI-VCurves,ClassAPower,Eff.,Load,Gmvs.Bias,thatcalculatesGmversusDCbiaspoint,usinganACsimulationatonefrequencytodetermineGm.
Figure3.TheFET_Gm_Calcsschematic,forsimulatingadevice’stransconductanceversusbias.
Figure4.Plotofdraincurrent,IDS,versusgatevoltage,VGS,andtransconductance,Gm.
Impedancematchingwithidealelements–first-stage
Determinetheoptimalsourceandloadreflectioncoefficientstopresenttothefirst-stagedevice,basedonnoisefigureandgain.Ifnoiseisnotimportant,thenjustdesignforgain.ThesimulationsetupfromtheAmplifierDesignGuide(fromaschematic,DesignGuide>Amplifier>DCandBiasPointSimulations>FETNoiseFig.,S-Params,Gain,Stability,andCirclesvs.Bias)isshowninFigure5.
Inthissetup,thegateanddrainvoltagesareswept,andtheS-parametersandnoiseparametersofthefirststagedevicearesimulatedat10GHz,ateachbiaspoint.Thecorrespondingdatadisplayshowsnoise,gain,andstabilitycircles,whichareallupdated,dependingonthebiaspointyouselectwithamarker,asshowninFigure6.
Abouta1-dBnoisefigureand>16dBofgainshouldbeachievable,butthedeviceispotentiallyunstable,asindicated
bythesourcestabilitycirclebeingwell
withintheunitSmithchart. Figure5.TheFET_SP_NF_Match_Circschematic,forsimulatingadevice’sS-parameters,gain,noise
figure,andstabilityversusbias.
Figure6.Thegain,noise,andstabilitycirclesareplottedforthebiaspointselectedbymarkermBiasPt.
Attainingstabilitywithidealelements–first-stage
Feedbackelementsareaddedbetweenthegateandgroundandbetweenthegateanddrainofthefirst-stageFETtoimprovestability.OptimizethestabilitycircuitsusingtheGain_and_Stab_optschematicfromtheAmplifierDesignGuide(fromaschematic,DesignGuide>Amplifier>S-ParameterSimulations>FeedbackNetworkOptimizationtoAttainStability),asshowninFigure7.
Thissimulationincludesgoalstoforcethegeometricsourceandloadstabilityfactors,mu_sourceandmu_load,respectively,tobe>1overabroadfrequencyrange.[Ref.M.L.Edwardsand
J.H.Sinsky,"Anewcriterionforlinear2-portstabilityusinggeometricallyderivedparameters",IEEETransactionsonMicrowaveTheoryandTechniques,Vol.40,No.12,pp.2303-2311,Dec.1992.]
Ifthesestabilityfactorsare>1,thenneitherthesourcenorloadstabilitycircleintersectstheunitSmithchart.
Minimumnoisefigureandgainareincludedasoptimizationgoals,otherwiseperformancemightbedegradedtoomuchtoattainstability.Theresults,showninFigure8,showgoodstabilityperformanceandreasonablygoodgainandminimumnoisefigure,butwithideallumpedelements.
Figure7.OptimizationoffeedbackandshuntR,L,andCvaluestoattainstabilitywithoutdegradingnoisefigureandgaintoomuch.
Figure8.Gainandstabilityoptimizationresults.
Replaceidealelementswithdesignkitelements–first-stageReplacingtheidealelementsinthestabilizationnetworkwithdesignkitelementsshowsadegradationinstability.Werunadiscrete-valueoptimizationtoadjustthedesignkitelementstoattainbetterstability.Discrete-valueoptimizationisnecessaryifsomeoftheparameterstobeoptimizedmayhaveonlydiscretevalues,suchasthenumberofturnsofaspiralinductor.TheresultoftheoptimizationisshowninFigure9.
ToimprovestabilitynearDC,weaddeda10-Ohmresistorinserieswiththeinductorbiasingthegateofthedevice,atalaterstepinthedesign.Discrete-valueoptimizationcanbequitetime-consuming,sinceitcarriesoutanexhaustivesearchofallpossiblecombinationsofparametervalues.Itisrecommendedtofirstrunacontinuousoptimizationtogetidealelementvaluesasastartingpoint,andthenrunadiscrete-valueoptimization,allowingtheparametervaluestovaryoveronlyalimitedrange.Certaincontinuousoptimizationtypes(mainlyrandomanditsvariations)willhandlebothcontinuousanddiscreteoptimizablevariables.
Impedancematching–first-stagewithstabilizationnetworkDeterminetheoptimalsourceandloadimpedancestopresenttothestabilizedFET,viaS-parameterandnoisefiguresimulations,usingtheSP_NF_GainMatchKschematicfromtheAmplifierDesignGuide(fromtheschematicDesignGuide>Amplifier>S-ParameterSimulations>S-Params,Gain,NF,Stability,GroupDelayvs.
SweptParameters,showninFigure10).
Figure9.Discretevalueoptimizationresults,usingcomponentsfromtheDemoKit.
Figure10.Simulationtodeterminetheoptimalsourceandloadimpedancesforgainorminimumnoisefigureforthefirststagedevicewithstabilizationnetwork.
Thedatadisplay,showninFigure11,showsthatwithasourceimpedanceof21.3+j*3.7ohms,thenoisefigureisabout2.0dB.Withthissourceimpedance,thecorrespondingoptimalloadimpedanceis65.1+j*38.5ohms,whichshouldgiveatransducerpowergainof13.1dB.Itwaslaterdiscoveredexperimentallythatgeneratingaload
impedanceof39.5+j*52.9ohmsgivesahigherone-dBgaincompressionoutputpowerforthetwo-stageamplifier,attheexpenseoflowergain,sothisimpedancewasusedinstead.Ifgainismoreimportantthannoise,thenasourceimpedancetomaximizegaincouldbechosen.
Loadpull–secondstagedeviceForthesecondstagewewanttogeneratemoreoutputpower,soweexperimentwiththedevicesize.Adevicesizefourtimesaslargeas
thefirststagedevicewasselected,althoughalargerdeviceshouldgivemoreoutputpower.Aloadpullsimulation,HB1Tone_LoadPullMagPh,copiedfromtheexamples/RF_Board/LoadPull_prj,showed26.7dBmpowerdelivered,withaloadof7.76+j*9.7ohms,asshowninFigure12.(Additionalloadpullutilitiesareavailableintheloadpullapplication,underDesignGuide>Loadpull,fromaschematicwindow.)
Figure11.Gainandnoisecirclesandoptimalsourceandloadimpedancesforminimumnoisefigure.
Figure12.Loadpullsimulationresults.
Sourcepull–secondstage
Asourcepullsimulation,HB1Tone_SourcePull,fromtheAmplifierDesignGuide,indicatesthatthepowerdeliveredtotheloaddoesnotdependmuchonthesourceimpedance.Sotheinterstagematchingnetworkisdesignedtoprovidethecomplexconjugateasthesourceimpedancetopresenttothesecond-stageFET,whilethisFETisterminatedintheoptimalloadimpedancedeterminedfromtheload-pullsimulation.
Designingtheinputmatchingnetwork
Therearethreematchingnetworkstobedesigned:theinputtothefirststage,theinterstagebetweenthefirstandsecondstage,andtheoutputofthesecondstage.Thingstoconsiderinchoosingthesenetworksincludethesizeofthepassiveelements,incorporatingDCblockingcapacitors,andmakingsomeofthenetworkshigh-passandotherslow-pass,sotheoverallresponseisband-pass.
Becauseoftherelativelylowoperatingfrequency,distributed-elementmatchingwouldrequiretoomuchspace,soweuselumpedelementsinstead.Becausethisimpedancematchingisatasinglefrequencyonly,two-element,lumpedmatchingmayberealizedquitesimply.
ThePassiveCircuitDesignGuidewasusedtogenerateasimple,lumped-elementmatchingnetworktogeneratethedesiredsourceimpedance,asshowninFigure13,andtheresultingnetworkisasimpleshunt-C,series-Lnetwork.(NotethatthissamematchcanbefoundintheMatchingutilityortheSmithChartutility.)
Figure13.Theinputmatchingnetwork.
Figure14.Simulatingtheimpedanceofabiasnetwork.
Figure15.Biasnetworkimpedancesimulationresults.
Replaceidealelementswithdesignkitelements
Thenetworkwithidealelementsmustbereplacedwithdesignkitelements,whichhaveparasitics.Theparasiticsvarywiththesizeofeachcomponent.
YouwanttheDC-biasinductortobelargeenoughtoprovideahigh
impedanceat10GHz,butnotsolargethatitsparasiticcapacitancetogroundcausesaself-resonancetooccurbelowthisfrequency.Figure14showsthesetupforsimulationoftheimpedanceofasimplebiasnetwork.
TheresultsareshowninFigure15.
TheinputmatchingcircuitwithdesignkitelementsandaDCbiasnetworkisshowninFigure16.
ThecorrespondinglayoutisshowninFigure17.Sincethiscircuitisusedtobiasthegateofthefirst-stagedevice,thereshouldbelittleornobiascurrentdrawnfromthesupply,soaresistorcouldbeusedinsteadoftheinductor.ThishastheadditionalbenefitofsavingGaAsrealestate.
Figure16.Inputmatchingcircuitschematic,withdesignkitelementsandaDCbiasnetwork.
Figure17.Correspondinginputmatchingcircuitlayout,withdesignkitelementsandaDCbiasnetwork.
Interstagematch
Theinterstagenetworktransformstheinputimpedanceofthesecond-stagedevicetotheoptimalloadimpedancetopresenttothefirst-stagedevice.TheMatchingutilitywasusedtodesign
thesimpleshunt-C,series-Lmatchingnetwork(orthePassiveCircuitDesignGuidecouldbeused).TheInterstageMatch_wBiasnetworkisshowninFigure18.ItshowstheinterstagematchingnetworkincludingdesignkitelementsandDCbiasinductors.
Thelayout,showninFigure19,hasthedrainbiasinductorofthefirststageveryclosetothegatebiasinductorofthesecondstage,socouplingislikelytooccur.Theamountofcouplingand
towhatdegreeitdegradescircuitperformancecanbedeterminedfromaMomentum(electromagnetic)
simulation,althoughwedidnotperformoneforthisexample.
Figure18.Theinterstagematchingnetwork,includingdesignkitelementsandDCbiasinductors.
Figure19.Interstagematchingnetworklayout.
Outputmatch–secondstageTheoutputmatchingnetworkisusedtotransform50Ohmstotheoptimalloadimpedance(7.76+j*9.7Ohms)topresenttotheoutputofthesecondstagedevice.Anideal,shunt-L,series-Cnetworkiscreatedusingthe
OutputMatch1schematicintheexample,whichcamefromtheAmplifierDesignGuide(anotheroptionforgeneratingimpedancematchingnetworks).TheOutputMatch_wBiasschematic(intheexamplefile,andnotshownhere)usesdesignkitelementsinsteadofidealelements,andincludesaDCbiasinductor.
Interstagematchandstabilityverification–S-probe
Thenextstepistoverifythatwhenweconnectthematchingnetworks,inputdevicewithitsstabilizationnetwork,andoutputdevicethatwearegeneratingthedesiredsourceandloadimpedancesateachdevice.Also,weneedtoverifythatthestabilityconditionsaresatisfiedattheinputandoutputplanesofeachdevice.AnS-probeisusedtodeterminethesourceandloadimpedancesattheinputandoutputofeachdevice.
TheS-probeisanelementthatyoucaninsertanywhereintoacircuitwithoutloadingit.Itwilldeterminetheimped-ancesandreflectioncoefficientslookinginbothdirections.Fromthesereflectioncoefficients,wecandeterminewhetherthesmall-signalstabilityconditionsaresatisfiedornot.TheS-probepairschematicusedinthisexampleisshowninFigure20.
Inputmatchverification
TheTwoStgAmpInZ_TB,showninFigure21,determinesthesourceandloadreflectioncoefficientspresentedtothefirststagedevice.
Figure20.S-probepairschematic.
Figure21.Determiningtheimpedanceslookingbothdirections,attheinputandoutputofthefirststageFET.
ThedatadisplayinFigure22showsthattheseimpedancesareclosetothedesiredvaluesat10GHz,andthatthestabilityconditionsaresatisfiedfrom
10MHzto20GHz.
OutputmatchverificationTwoStgAmpOutZ_TB(showninFigure23)determinesthesourceandloadreflectioncoefficientspresentedtotheoutputdevice.
Figure22.Sourceandloadimpedancesclosetothedesiredvaluesarebeinggeneratedbythematchingnetworks.
Figure23.Two-stageamplifieroutputschematic.
ThedatadisplayinFigure24showsthattheloadimpedanceisclosetothedesiredvalueat10GHz,andthatthestabilityconditionsaresatisfiedfrom10MHzto20GHz.(Itisnecessarytocheckstabilityconditionsoverabroadfrequencyrange,beyondtheoperatingbandofinterest,tocheckforundesiredpotentialoscillations.)Also,thesource
impedancepresentedtotheinputofthedeviceisclosetothecomplexconjugateofthedevice’sinputimpedance
at10GHz.
Two-stageamplifiergaincompression
Next,aswept-powersimulationofthetwo-stageamplifierwithmatchingnetworkswascarriedouttodeterminethemaximumoutputpowerthatcouldbesupplied,power-addedefficiency,1-dBcompressionpoint,etc.ThissimulationisTwoStgAmp_TB,asshowninFigure25,andindicatesamaximumoutputpowerofabout
26.6dBmandanoutputpoweratthe1-dBgaincompressionpointofabout25dBm.ThissimulationsetupanddatadisplayarefromtheAmplifier
DesignGuide(DesignGuide>Amplifier>1-ToneNonlinearSimulations>Spectrum,Gain,HarmonicDistortionvs.Power(w/PAE)).TherearemanyothersimulationsetupsintheAmplifierDesignGuide,soyoucouldlookatthingslikeintermodulationdistortion,1-dB
gaincompression,frequencyresponse,andresponsesversussweptparametersaswell.
Figure24.Sourceandloadimpedancesclosetothedesiredvaluesarebeinggeneratedforthesecond-stagedevice,andthestabilityconditionsaresatisfied.
Figure25.Simulatingthegaincompressionandpower-addedefficiencyofthetwo-stageamplifier.
Branch-LineCouplerDesign
Branch-linecouplersareusedattheinputandoutput,tosplitthesignaltobesentthroughtwoparallel,identicaltwo-stageamplifiersandthentorecombinethesignalsattheoutput.Oneoftheadvantagesofthisapproachisthattheinputandoutputmatchesoftheoverallamplifieraregood,eventhoughthetwo-stageamplifiermay
bemismatchedattheinputoroutput.Also,youpotentiallycanobtain3dBhigheroutputpowerthanasingleamplifiercouldprovidebyitself.
Branch-linecouplersmaybeimplementedviaquarter-wavelengthtransmissionlinesasshowninFigure26.Butat10GHz,theselineswouldbe2-3millimeterslong.Soinstead,thetransmissionlinesarereplacedbyC-L-Cpinetworks,asshowninFigure26.Thevaluesfortheinductorsandcapacitorsaregivenbytheequationsinthefigure.
ExactvaluesfortheLsandCsarecomputedontheBLC_LumpedIdealschematic,showninFigure27.(Itisusefultohaveanidealbranch-linecoupler,becauseitcanbeusedtodeterminethebestperformancethattheamplifieriscapableofachieving,andtodeterminewhethertimeandeffortshouldbeexpendedonimprovingaphysicalbranch-linecouplerdesignoronthetwo-stageamplifier.)TheseLsandCswereconvertedtodesignkitcomponents,with
aresultingdegradationinperformance.
Figure26.TheBranch-linecoupler,implementedastransmissionlines,canbeimplementedusinga-networkequivalentcircuitforeachl/4section,usingtheequationsshown[Reference,"FoundationsforMicrostripCircuitDesign,"T.C.Edwards,JohnWileyandSons,1981,pg.10.]
Figure27.Abranch-linecouplerimplementedusingideal,lumpedelements.
Adiscrete-valueoptimizationwasrun(setupisBranchLineCoupDiscOpt)asshowninFigure28,toimprovetheper-formanceofthebranch-linecouplercircuitimplementedwithdesignkitcomponents.
ThesimulationresultsareshownintheBLC_Lumped_TBdatadisplay,asshowninFigure29.
Figure28.Setupforoptimizingthebranch-linecouplerperformance.Theoptimizablevariablesaredefinedinthesubcircuit,asshowninFigure30.
Figure29.Optimizedbranch-linecouplerperformance.
TheoptimizedparametervaluesareshownontheBLC_Lumpedschematic,showninFigure30.TheBLC_LumpedBk_to_Bk_TBisusedtodeterminetheinsertionlossaswellastheoverallfrequencyresponseoftwobranch-linecouplersconnectedbacktoback.Ideally,thislosswouldbe0dB,buttheactuallosswillreducetheideal
3-dBincreaseinoutputpowerthatthisbalancedamplifierconfigurationwouldachieveifthesewerelossless.Youcancompensateforlossduetotheinputbranch-linecouplerbyincreasingtheinputsignalpower,butyoucannotmakeupforthelossduetotheoutputcoupler.
Preliminarybalancedamplifierperformance(withoutincludinginterconnectparasitics)
Combiningthetwo-stageamplifiersandlumped-elementbranch-linecouplerstogether,wegetabalancedamplifier.ThisissimulatedinBalancedLumpedAmp_TB,andshowninFigure31.ThisisthesamesimulationsetupfromtheAmplifierDesignGuidethatwasusedtoevaluatethetwo-stageamplifier.Theresultsshowasaturatedoutputpowerofabout29dBm,andanoutputpoweratthe1-dBgaincompressionpointofabout26.5dBm.
Theseresultsarewithdesignkitcomponents,butwithoutincludinganytransmissionlineeffects.
Figure30.Optimizedbranch-linecouplerparametervalues.
Figure31.Simulatingthegain,power,andpower-addedefficiencyofthepreliminarybalancedamplifier.
Creatingthelayout
Thelayoutofeachsubcircuitwasdonebyinitiallyplacingdesignkitelementsintheschematic,thenusingtheLayout>PlaceComponentsFromSchemToLayoutcommandtomanuallyplacethecomponentsintothelayout.AfasteralternativeistheLayout>Generate/UpdateLayoutcommand,whichwillautomaticallyplacealloftheschematiccomponentsintothelayout.Aftercomponentswereplacedinthelayout,traceswereinserted(Insert>Tracecommand,orselectingthetoolbaricon)toconnectthemtogether.
LineCalcwasusedtodeterminethata70µmwidthwasneededfora50Ohmlineon100µmGaAs,andthata20-µmwidelineisabout77Ohms.ForRFinterconnects,thesetransmissionlinelengthsarekeptasshortaspossibletominimizeparasitics.
Inthelayout,viaswereinsertedwhereitwasnecessarytochangefromonemetallayertoanother.ThesewerethenplacedintheschematicviatheSchematic>PlaceComponentsFromLayoutToSchemcommand.
TheTools>CheckRepresentationcommand,showninFigure32,isquiteusefulforverify-ingthatallcomponentshavebeenplacedinboththelayoutandtheschematicandthattheirparametervaluesallmatch.
ErrorsarereportedasshowninFigure33.Whenplacingthesubcircuitsinthetop-levellayout,theEdit>EditInPlace>PushIntocommandisquiteusefulforaligningthepinsofdifferentsubcircuitsforfinalcon-nectionsaswellasforadjustingtheplacementofcomponentstoeliminateoverlapsandminimizewastedspace.
Figure32.Checkrepresentationdialogbox.
Figure33.Checkrepresentationerrordisplay.
AninitiallayoutofthecompleteamplifierisshowninBalancedLumpedAmplayout,
Figure34.Sincetheeffectsoftransmissionlineshavenotbeenincludedinthesimulationsyet,itisexpectedthatsomeadjustmentstothislayoutwillbenecessary.
Modelingtransmissionlineeffects–convertingtracestotransmissionlineelements
Toincludetheeffectsoftransmissionlines,thetracesinthelayout(whicharesimulatedasshortcircuits)mustbeconvertedtotransmissionlineelements.Todothis,acopyofeachsubcircuitwascreated,addingthesuffix“wTLs”tothedesignname(althoughthisisnotnecessary,itmakesiteasiertocomparethecircuitperformancewithandwithoutincludingtransmissionlineeffects.)AnMSUBcomponentforeachmetallayeronwhichtransmissionlineeffectsweretobeincludedwasplacedintotheschematic.EachMSUBcomponentwouldhaveadifferentmetallayernameforitsCond1parameter.Inthisdesign,allRFtracesareoneitherMetal1orMetal2,sotwoMSUBcompo-nentshavebeeninserted.(IftracesonMetal3aretobemodeledastransmissionlines,also,thenathirdMSUBcomponentisnecessary.)Somerealdesignkitsmighthavepre-definedMSUBcomponents;oneforeachmetallayer.
Ineachlayout,toconvertalltracesonaparticularlayer,doaSelect>SelectAllOnLayer...ThendoanEdit>Path/Trace/Wire>ConvertTraces...IntheTraceControldialogbox,showninFigure35,setConvertTracetoTransmissionlineelementsandentertheMSUBElementID(fromtheschematic)underSubstrateReferences.Whenthiscommandisexecuted,thetracesinthelayoutareconvertedtotransmission
lineelements.
Figure34.TheBalancedLumpedAmplayout.
Figure35.Tracecontroldialogbox.
Figure36showsasectionofalayoutaftertraceshavebeenconvertedtotransmissionlines.ThesetransmissionlinescanthenbeplacedintheschematicviatheSchematic
PlaceComponentsFromLayoutToSchemcommand.Thereareafewwaystodothis.First,youcanmanuallyplacethecomponentstocreateaschematicthatlookssimilartoyourlayout,anditenablesyoutofindkeytransmissionlinesandtesttheeffectsofvaryingthemonperformance.Anotheroptionistouselayoutlook-alikecomponentstocreateschematicsymbolsthatlookthesameasthepassivepartsofyourlayout.Withthismethod,aMomentumsimulationisautomaticallylaunchedtogenerateamodelforeachlook-alikecomponent,buttheMomentumsimulationonlyhastoberunonce,aslongasyoudon’tmodifythelayout.Thisshouldgivethemostaccuratesimulationresults.
Alternatively,youcanskipplacingthetransmissionlinecomponentsontotheschematicandinsteadselectSimulatefromLayoutintheDesignParametersdialog(File>DesignParameters),asshowninFigure37.
Figure36.Partofalayoutafterconvertingtracestotransmissionlines.
Figure37.DesignParametersdialogbox,allowingyoutospecifythatthelayoutrepresentationbeusedforthesimulation.
Compensatingfortransmissionline
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 厂房装饰装修合同范本
- 医院和药店合作协议书范本
- 商协会公司劳务合同
- 二零二四年度企业品牌形象设计服务协议
- 固定资产折旧合同
- 二零二四年度煤矿企业保洁保安服务合同
- 二零二四年建筑设计与工程咨询合同
- 专业老鼠防治合同
- 施工合同权益规定
- 二零二四年度停车场车牌识别系统合同:某智能科技公司与停车场的车牌识别系统协议
- 消防中控室值班记录表(标准通用版)
- 五年级英语上册素材-Module 1课文翻译 外研版(一起点)
- 统编版小学语文一年级上册《比尾巴》预学单
- 富士施乐复印机扫描到PC设置方法
- 中小学幼儿园数字化教学资源进校园管理办法
- 高效课堂做好笔记 课件-学习习惯的培养主题班会
- control-m作业调度系统操作手册说明书
- 三年级美术上册 《梦幻中的城堡》教育教学课件
- 消化内镜清洗消毒技术操作流程图(最新)
- 煤矿运输“四超”物件安全技术措施
- 人卫版外科学小肠疾病第一、二、三节课件
评论
0/150
提交评论