专题21 一次函数的应用压轴题四种模型全攻略(原卷版)_第1页
专题21 一次函数的应用压轴题四种模型全攻略(原卷版)_第2页
专题21 一次函数的应用压轴题四种模型全攻略(原卷版)_第3页
专题21 一次函数的应用压轴题四种模型全攻略(原卷版)_第4页
专题21 一次函数的应用压轴题四种模型全攻略(原卷版)_第5页
已阅读5页,还剩6页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

专题21一次函数的应用压轴题四种模型全攻略【考点导航】目录TOC\o"1-3"\h\u【典型例题】 1【考点一一次函数的应用——分配方案问题】 1【考点二一次函数的应用——最大利润问题】 5【考点三一次函数的应用——行程问题】 8【考点四一次函数的应用——几何问题】 12【过关检测】 15【典型例题】【考点一一次函数的应用——分配方案问题】例题:(2023春·云南临沧·八年级统考期末)为全面推进乡村振兴,某省实行城市援助乡镇的政策该省的A市有吨物资,市有吨物资经过调研发现该省的甲乡需要吨物资,乙乡需要吨物资于是决定由A、两市负责援助甲、乙两乡、已知从A市往甲、乙两乡运送物资的运费分别为元吨、元吨,从市往甲、乙两乡运送物资的运费分别为元吨、元吨.(1)设从A市往甲乡运送吨物资,从A、两市向甲、乙两乡运送物资的总运费为元,求与的函数解析式.(2)请设计运费最低的运送方案,并求出最低运费.【变式训练】1.(2023春·河南郑州·八年级河南省实验中学校考期中)4月23日是“世界读书日”,某书店在这一天举行了购书优惠活动,有两种优惠方案可以选择:方案一:享受当天购书按标价总额8折的普通优惠;方案二:50元购买一张“书香城市纪念卡”,当天凭卡购书,享受标价总额在普通优惠的基础上再打折的优惠.设小明当天购书标价总额为x元,方案一应付元,方案二应付元.(1)当时,请通过计算说明选择哪种购书方案更划算;(2)直接写出与x的函数关系式;(3)小明如何选择购书方案才更划算?2.(2023春·河南南阳·八年级统考阶段练习)暑期将至,某健身俱乐部面向学生推出暑期优惠活动,活动方案如下.方案一:购买一张学生暑期专享卡,每次健身费用按六折优惠;方案二:不购买学生暑期专享卡,每次健身费用按八折优惠.设某学生暑期健身x(次),按照方案一所需费用为(元),且;按照方案二所需费用为(元),且.其函数图象如图所示.

(1)求k1和b的值,并说明它们的实际意义;(2)求打折前的每次健身费用和的值;(3)八年级学生小华计划暑期前往该俱乐部健身7次,应选择哪种方案所需费用更少?请说明理由.【考点二一次函数的应用——最大利润问题】例题:(2023春·贵州黔南·八年级统考期末)某地允许市场经营主体在规范有序的条件下,采取“店铺外摆”“露天市场”方式进行销售.个体业主小王响应号召,采取“店铺外摆”方式销售甲、乙两种特价商品,两种商品的进价与售价如表所示:甲商品乙商品进价(元/件)4010售价(元/件)5015小王计划购进甲、乙两种商品共100件进行销售,设小王购进甲商品x件,甲、乙两种商品全部销售完后获得的利润为y元.(1)求出y与x之间的函数关系式;(2)若购进乙商品的件数不少于甲商品件数的4倍,当购进甲、乙两种商品各多少件时,可使得甲、乙两种商品全部销售完后获得的利润最大?最大利润是多少?【变式训练】1.(2023春·广西南宁·八年级校考期末)小冬在某网店选中,两款玩偶,决定从该网店进货并销售.两款玩偶的进货价和销售价如表:款玩偶款玩偶进货价(元/个)2015销售价(元/个)2820(1)第一次小冬用550元购进了,两款玩偶共30个,求两款玩偶各购进多少个;(2)第二次小冬进货时,网店规定款玩偶进货数量不得超过款玩偶进货数量的一半.小冬计划购进两款玩偶共45个,应如何设计进货方案才能获得最大利润,最大利润是多少?2.(2023·河南洛阳·统考二模)俄乌战争仍在继续,人们对各种军用装备倍感兴趣,某商家购进坦克模型(记作A)和导弹(记作B)两种模型,若购进A种模型10件,B种模型5件,需要1000元;若购进A种模型4件,B种模型3件,需要550元.(1)求购进A,B两种模型每件分别需多少元?(2)若销售每件A种模型可获利润20元.每件B种模型可获利润30元.商店用1万元购进模型,且购进A种模型的数量不超过B种模型数量的8倍,设总盈利为W元,购买B种模型b件,请求出W关于b的函数关系式,并求出当b为何值时,销售利润最大,并求出最大值.【考点三一次函数的应用——行程问题】例题:(2023春·山东淄博·七年级统考期中)甲、乙两地相距千米,一辆货车和一辆轿车先后从甲地出发开往乙地.如图,线段表示货车离甲地距离千米与时间小时之间的函数关系;折线表示轿车离甲地距离千米与小时之间的函数关系.请根据图象解答下列问题:

(1)求线段对应的函数解析式.(2)货车从甲地出发后多长时间被轿车追上?此时离甲地的距离是多少千米?(3)轿车到达乙地后,货车距乙地多少千米.【变式训练】1.(2023·河北沧州·校考模拟预测)航模兴趣小组在操场上进行航模试验,甲型航模从距离地面20米处出发,以a米/分的速度匀速上升,乙型航模从距离地面50米处同时出发,以15米/分的速度匀速上升,经过6分钟,两架航模距离地面高度都是b米,两架航模距离地面的高度y米与时间x分钟的关系如图.两架航模都飞行了20分钟.

(1)直接写出a、b的值;(2)求出两架航模距离地面高度y甲、y乙(米)与飞行时间x(分钟)的函数关系式;(3)直接写出飞行多长时间,两架航模飞行高度相差25米?2.(2023春·江苏淮安·九年级校考期中)如图1,甲、乙两车分别从相距的、两地相向而行,乙车比甲车先出发小时,并以各自的速度匀速行驶,甲车到达地后因有事立刻按原路原速返回地.乙车从地直达地,两车同时到达地.甲、乙两车距各自出发地的路程(千米)与甲车出发所用的时间(小时)的关系如图,结合图像信息解答下列问题:

(1)乙车的速度是千米/时,乙车行驶小时到达地;(2)求甲车从地按原路原速返回地的过程中,甲车距它出发地的路程与它出发的时间的函数关系式;(3)求甲车出发多长时间两车相距千米?【考点四一次函数的应用——几何问题】例题:(2023春·河南南阳·八年级校考阶段练习)如图,正方形的边长为4,P为正方形边上一动点,运动路线是,设P点经过的路程为x,以点A、P、D为顶点的三角形的面积是y,则下列图象能大致反映y与x的函数关系的是(

)A.B. C. D.【变式训练】1.(2021春·福建漳州·七年级福建省漳州第一中学校考期中)如图,已知动点P从B点出发,以每秒的速度在图①的边(相邻两边互相垂直)上按的路线移动,相应的的面积与点P的运动时间的图象如图②所示,且.当时,.

2.(2023春·安徽宿州·七年级校考期中)如图,在长方形中,,,点E为边上一动点,连接,随着点E的运动,的面积也发生变化.

(1)写出的面积y与的长之间的关系式;(2)当时,求y的值.【过关检测】一、单选题1.(2023秋·黑龙江哈尔滨·九年级哈尔滨市萧红中学校考开学考试)市自来水公司为鼓励居民节约用水,采取月用水量分段收费办法,某户居民应交水费y(元)与用水量x(吨)的函数关系如图,若该用户本月用水21吨,则应交水费(

A.52.5元 B.48元 C.45元 D.42元2.(2023·陕西西安·校考二模)在物理实验课上,小鹏利用滑轮组及相关器材进行实验,他把得到的拉力F(N)和所悬挂物体的重力G(N)的几组数据用电脑绘制成如图所示的图象(不计绳重和摩擦),请你根据图象判断以下结论不正确的是()

A.物体的拉力随着重力的增加而增大B.当拉力时,物体的重力C.当物体的重力时,拉力D.当滑轮组不悬挂物体时,所用拉力为0.5N3.(2023春·重庆九龙坡·八年级重庆实验外国语学校统考阶段练习)在5.1劳动节期间,甲乙两人相约一起去登山,登山过程中,甲先爬了米、乙才开始追赶甲,乙行了2分钟后,速度变成甲登山速度的3倍,甲、乙两人距地面的高度y(米)与乙登山时间x(分)之间的函数图像如图所示,根据图像所提供的信息有下列说法:①甲的登山速度米/分;②分;③当乙行了分钟后,甲乙相遇;④甲乙相遇后,甲再经过1分钟与乙相距米,其中正确的有(

A.①② B.①②③ C.②③④ D.①②③④二、填空题4.(2023春·山东菏泽·八年级校考阶段练习)拖拉机工作时,油箱中的余油量Q(升)与工作时间t(时)d关系式为.当时,升,从关系式可知道这台拖拉机最多可工作小时.5.(2023春·安徽宿州·七年级统考阶段练习)如图,李大爷要围成一个长方形菜园,菜园的一边利用足够长的墙,用篱笆围成的另外三边总长度恰好为.设边的长为,AB边的长为,则y与x之间的关系式是.

6.(2023春·北京石景山·七年级统考期末)小石的妈妈需要购买盒子存放升的食物,且要求每个盒子要装满.现有两种型号的盒子,单个盒子的容量和价格如下表.型号单个盒子容量(升)单价(元)(1)写出一种购买方案,可以为;(2)恰逢五一假期,型号盒子正在做促销活动,即购买三个及三个以上可一次性返现金元,则购买盒子所需要的最少费用为元.三、应用题7.(2023·广东深圳·深圳市桂园中学校考模拟预测)某小区为了绿化环境,计划分两次购进A、B两种花草,第一次分别购进A、B两种花草30棵和15棵,共花费675元;第二次分别购进A、B两种花草12棵和5棵.共花费265元;若两次购进的A、B两种花草价格均分别相同.(1)A、B两种花草每棵的价格分别是多少元?(2)若购买A、B两种花草共30棵,且B种花草的数量少于A种花草数量的2倍,请你给出一种费用最省的方案,并求出该方案所需费用.8.(2023秋·广东茂名·八年级校联考期中)某文具商店文具促销给出了两种优惠方案:①买一支钢笔赠送一本笔记本,多于钢笔数的笔记本按原价收费;②钢笔和笔记本均按定价的八折收费.已知每支钢笔定价为15元,每本笔记本定价为4元.某顾客准备购买x支钢笔和笔记本本,设选择第一种方案购买所需费用为元,选择第二种方案购买所需费用为元.(1)请分别写出,与x之间的关系式:,;(2)若该顾客准备购买10支钢笔,且只能选择其中一种优惠方案,请你通过计算说明选择哪种方案更为优惠.9.(2023春·贵州贵阳·九年级校考阶段练习)为进行垃圾分类,我校准备购买,两种型号的垃圾箱,通过市场调研发现:购买1个型垃圾箱和2个型垃圾箱共需340元;购买5个型垃圾箱和2个型垃圾箱共需540元.(1)求每个型垃圾箱和型垃圾箱各多少元?(2)若需要购买,两种型号的垃圾箱共30个,其中购买型垃圾箱不超过15个,当购买型垃圾箱多少个时总花费(元)最少,最少费用是多少?10.(2023春·贵州黔西·八年级校联考期末)为庆祝中华人民共和国七十周年华诞,某校举行书画大赛,准备购买甲、乙两种文具,奖励在活动中表现优秀的师生,已知购买2个甲种文具,1个乙种文具共需要花费35元,购买1个甲种文具,3个乙种文具共需要花费30元.(1)求购买一个甲种文具,一个乙种文具各需多少钱?(2)若学校计划购买这两种文具共120个,投入资金不少于955元,又不多于1000元,求有多少种购买方案?(3)学校投入资金W元,在(2)的条件下,哪种购买方案需要的资金最少?最少资金是多少元?11.(2023春·吉林长春·八年级校考期中)甲,乙两辆汽车分别从A,B两地同时出发,沿同一条公路相向而行,已知甲车匀速行驶;乙车出发后休息,与甲车相遇后继续行驶,结果同时分别到达B,A两地.设甲、乙两车与B地的距离分别为,,甲车行驶的时间为,、与x之间的函数图象如图所示,结合图象解答下列问题:

(1)乙车休息了______.(2)求甲车的速度.(3)求乙车与甲车相遇后关于x的函数表达式,并写出自变量x的取值范围.(4)当两车相距时,直接写出x的值.12.(2023秋·安徽滁州·八年级校联考阶段练习

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论