![2023-2024学年安徽省安庆一中安师大附中铜陵一中马鞍山二中高三上数学期末调研试题含解析_第1页](http://file4.renrendoc.com/view11/M02/03/33/wKhkGWWEUL6AU3GkAAJcuoa7wXI802.jpg)
![2023-2024学年安徽省安庆一中安师大附中铜陵一中马鞍山二中高三上数学期末调研试题含解析_第2页](http://file4.renrendoc.com/view11/M02/03/33/wKhkGWWEUL6AU3GkAAJcuoa7wXI8022.jpg)
![2023-2024学年安徽省安庆一中安师大附中铜陵一中马鞍山二中高三上数学期末调研试题含解析_第3页](http://file4.renrendoc.com/view11/M02/03/33/wKhkGWWEUL6AU3GkAAJcuoa7wXI8023.jpg)
![2023-2024学年安徽省安庆一中安师大附中铜陵一中马鞍山二中高三上数学期末调研试题含解析_第4页](http://file4.renrendoc.com/view11/M02/03/33/wKhkGWWEUL6AU3GkAAJcuoa7wXI8024.jpg)
![2023-2024学年安徽省安庆一中安师大附中铜陵一中马鞍山二中高三上数学期末调研试题含解析_第5页](http://file4.renrendoc.com/view11/M02/03/33/wKhkGWWEUL6AU3GkAAJcuoa7wXI8025.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年安徽省安庆一中安师大附中铜陵一中马鞍山二中高三上数学期末调研试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.将函数的图象向右平移个周期后,所得图象关于轴对称,则的最小正值是()A. B. C. D.2.三棱锥的各个顶点都在求的表面上,且是等边三角形,底面,,,若点在线段上,且,则过点的平面截球所得截面的最小面积为()A. B. C. D.3.已知抛物线的焦点为,若抛物线上的点关于直线对称的点恰好在射线上,则直线被截得的弦长为()A. B. C. D.4.若的展开式中的常数项为-12,则实数的值为()A.-2 B.-3 C.2 D.35.某圆柱的高为2,底面周长为16,其三视图如图所示,圆柱表面上的点在正视图上的对应点为,圆柱表面上的点在左视图上的对应点为,则在此圆柱侧面上,从到的路径中,最短路径的长度为()A. B. C. D.26.赵爽是我国古代数学家、天文学家,大约在公元222年,赵爽为《周髀算经》一书作序时,介绍了“勾股圆方图”,亦称“赵爽弦图”(以弦为边长得到的正方形是由4个全等的直角三角形再加上中间的一个小正方形组成的).类比“赵爽弦图”.可类似地构造如下图所示的图形,它是由3个全等的三角形与中间的一个小等边三角形拼成一个大等边三角形.设,若在大等边三角形中随机取一点,则此点取自小等边三角形(阴影部分)的概率是()A. B. C. D.7.设、,数列满足,,,则()A.对于任意,都存在实数,使得恒成立B.对于任意,都存在实数,使得恒成立C.对于任意,都存在实数,使得恒成立D.对于任意,都存在实数,使得恒成立8.执行如图所示的程序框图,若输出的,则输入的整数的最大值为()A.7 B.15 C.31 D.639.如图,棱长为的正方体中,为线段的中点,分别为线段和棱上任意一点,则的最小值为()A. B. C. D.10.平行四边形中,已知,,点、分别满足,,且,则向量在上的投影为()A.2 B. C. D.11.已知全集,则集合的子集个数为()A. B. C. D.12.已知函数,集合,,则()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.设实数,满足,则的最大值是______.14.设、、、、是表面积为的球的球面上五点,四边形为正方形,则四棱锥体积的最大值为__________.15.有以下四个命题:①在中,的充要条件是;②函数在区间上存在零点的充要条件是;③对于函数,若,则必不是奇函数;④函数与的图象关于直线对称.其中正确命题的序号为______.16.若在上单调递减,则的取值范围是_______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数(1)当时,证明,在恒成立;(2)若在处取得极大值,求的取值范围.18.(12分)已知首项为2的数列满足.(1)证明:数列是等差数列.(2)令,求数列的前项和.19.(12分)已知数列中,,前项和为,若对任意的,均有(是常数,且)成立,则称数列为“数列”.(1)若数列为“数列”,求数列的前项和;(2)若数列为“数列”,且为整数,试问:是否存在数列,使得对任意,成立?如果存在,求出这样数列的的所有可能值,如果不存在,请说明理由.20.(12分)选修4-2:矩阵与变换(本小题满分10分)已知矩阵A=(k≠0)的一个特征向量为α=,A的逆矩阵A-1对应的变换将点(3,1)变为点(1,1).求实数a,k的值.21.(12分)已知是等腰直角三角形,.分别为的中点,沿将折起,得到如图所示的四棱锥.(Ⅰ)求证:平面平面.(Ⅱ)当三棱锥的体积取最大值时,求平面与平面所成角的正弦值.22.(10分)设椭圆的离心率为,左、右焦点分别为,点D在椭圆C上,的周长为.(1)求椭圆C的标准方程;(2)过圆上任意一点P作圆E的切线l,若l与椭圆C交于A,B两点,O为坐标原点,求证:为定值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】
由函数的图象平移变换公式求出变换后的函数解析式,再利用诱导公式得到关于的方程,对赋值即可求解.【详解】由题意知,函数的最小正周期为,即,由函数的图象平移变换公式可得,将函数的图象向右平移个周期后的解析式为,因为函数的图象关于轴对称,所以,即,所以当时,有最小正值为.故选:D【点睛】本题考查函数的图象平移变换公式和三角函数诱导公式及正余弦函数的性质;熟练掌握诱导公式和正余弦函数的性质是求解本题的关键;属于中档题、常考题型.2、A【解析】
由题意画出图形,求出三棱锥S-ABC的外接球的半径,再求出外接球球心到D的距离,利用勾股定理求得过点D的平面截球O所得截面圆的最小半径,则答案可求.【详解】如图,设三角形ABC外接圆的圆心为G,则外接圆半径AG=,设三棱锥S-ABC的外接球的球心为O,则外接球的半径R=取SA中点E,由SA=4,AD=3SD,得DE=1,所以OD=.则过点D的平面截球O所得截面圆的最小半径为所以过点D的平面截球O所得截面的最小面积为故选:A【点睛】本题考查三棱锥的外接球问题,还考查了求截面的最小面积,属于较难题.3、B【解析】
由焦点得抛物线方程,设点的坐标为,根据对称可求出点的坐标,写出直线方程,联立抛物线求交点,计算弦长即可.【详解】抛物线的焦点为,则,即,设点的坐标为,点的坐标为,如图:∴,解得,或(舍去),∴∴直线的方程为,设直线与抛物线的另一个交点为,由,解得或,∴,∴,故直线被截得的弦长为.故选:B.【点睛】本题主要考查了抛物线的标准方程,简单几何性质,点关于直线对称,属于中档题.4、C【解析】
先研究的展开式的通项,再分中,取和两种情况求解.【详解】因为的展开式的通项为,所以的展开式中的常数项为:,解得,故选:C.【点睛】本题主要考查二项式定理的通项公式,还考查了运算求解的能力,属于基础题.5、B【解析】
首先根据题中所给的三视图,得到点M和点N在圆柱上所处的位置,将圆柱的侧面展开图平铺,点M、N在其四分之一的矩形的对角线的端点处,根据平面上两点间直线段最短,利用勾股定理,求得结果.【详解】根据圆柱的三视图以及其本身的特征,将圆柱的侧面展开图平铺,可以确定点M和点N分别在以圆柱的高为长方形的宽,圆柱底面圆周长的四分之一为长的长方形的对角线的端点处,所以所求的最短路径的长度为,故选B.点睛:该题考查的是有关几何体的表面上两点之间的最短距离的求解问题,在解题的过程中,需要明确两个点在几何体上所处的位置,再利用平面上两点间直线段最短,所以处理方法就是将面切开平铺,利用平面图形的相关特征求得结果.6、A【解析】
根据几何概率计算公式,求出中间小三角形区域的面积与大三角形面积的比值即可.【详解】在中,,,,由余弦定理,得,所以.所以所求概率为.故选A.【点睛】本题考查了几何概型的概率计算问题,是基础题.7、D【解析】
取,可排除AB;由蛛网图可得数列的单调情况,进而得到要使,只需,由此可得到答案.【详解】取,,数列恒单调递增,且不存在最大值,故排除AB选项;由蛛网图可知,存在两个不动点,且,,因为当时,数列单调递增,则;当时,数列单调递减,则;所以要使,只需要,故,化简得且.故选:D.【点睛】本题考查递推数列的综合运用,考查逻辑推理能力,属于难题.8、B【解析】试题分析:由程序框图可知:①,;②,;③,;④,;⑤,.第⑤步后输出,此时,则的最大值为15,故选B.考点:程序框图.9、D【解析】
取中点,过作面,可得为等腰直角三角形,由,可得,当时,最小,由,故,即可求解.【详解】取中点,过作面,如图:则,故,而对固定的点,当时,最小.此时由面,可知为等腰直角三角形,,故.故选:D【点睛】本题考查了空间几何体中的线面垂直、考查了学生的空间想象能力,属于中档题.10、C【解析】
将用向量和表示,代入可求出,再利用投影公式可得答案.【详解】解:,得,则向量在上的投影为.故选:C.【点睛】本题考查向量的几何意义,考查向量的线性运算,将用向量和表示是关键,是基础题.11、C【解析】
先求B.再求,求得则子集个数可求【详解】由题=,则集合,故其子集个数为故选C【点睛】此题考查了交、并、补集的混合运算及子集个数,熟练掌握各自的定义是解本题的关键,是基础题12、C【解析】
分别求解不等式得到集合,再利用集合的交集定义求解即可.【详解】,,∴.故选C.【点睛】本题主要考查了集合的基本运算,难度容易.二、填空题:本题共4小题,每小题5分,共20分。13、1【解析】
根据目标函数的解析式形式,分析目标函数的几何意义,然后判断求出目标函数取得最优解的点的坐标,即可求解.【详解】作出实数,满足表示的平面区域,如图所示:由可得,则表示直线在轴上的截距,截距越小,越大.由可得,此时最大为1,故答案为:1.【点睛】本题主要考查线性规划知识的运用,考查学生的计算能力,考查数形结合的数学思想.14、【解析】
根据球的表面积求得球的半径,设球心到四棱锥底面的距离为,求得四棱锥的表达式,利用基本不等式求得体积的最大值.【详解】由已知可得球的半径,设球心到四棱锥底面的距离为,棱锥的高为,底面边长为,的体积,当且仅当时等号成立.故答案为:【点睛】本小题主要考查球的表面积有关计算,考查球的内接四棱锥体积的最值的求法,属于中档题.15、①【解析】
由三角形的正弦定理和边角关系可判断①;由零点存在定理和二次函数的图象可判断②;由,结合奇函数的定义,可判断③;由函数图象对称的特点可判断④.【详解】解:①在中,,故①正确;②函数在区间上存在零点,比如在存在零点,但是,故②错误;③对于函数,若,满足,但可能为奇函数,故③错误;④函数与的图象,可令,即,即有和的图象关于直线对称,即对称,故④错误.故答案为:①.【点睛】本题主要考查函数的零点存在定理和对称性、奇偶性的判断,考查判断能力和推理能力,属于中档题.16、【解析】
由题意可得导数在恒成立,解出即可.【详解】解:由题意,,当时,显然,符合题意;当时,在恒成立,∴,∴,故答案为:.【点睛】本题主要考查利用导数研究函数的单调性,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析(2)【解析】
(1)根据,求导,令,用导数法求其最小值.设研究在处左正右负,求导,分,,三种情况讨论求解.【详解】(1)因为,所以,令,则,所以是的增函数,故,即.因为所以,①当时,,所以函数在上单调递增.若,则若,则所以函数的单调递增区间是,单调递减区间是,所以在处取得极小值,不符合题意,②当时,所以函数在上单调递减.若,则若,则所以的单调递减区间是,单调递增区间是,所以在处取得极大值,符合题意.③当时,,使得,即,但当时,即所以函数在上单调递减,所以,即函数)在上单调递减,不符合题意综上所述,的取值范围是【点睛】本题主要考查导数与函数的单调性和极值,还考查了转化化归的思想和运算求解的能力,属于难题.18、(1)见解析;(2)【解析】
(1)由原式可得,等式两端同时除以,可得到,即可证明结论;(2)由(1)可求得的表达式,进而可求得的表达式,然后求出的前项和即可.【详解】(1)证明:因为,所以,所以,从而,因为,所以,故数列是首项为1,公差为1的等差数列.(2)由(1)可知,则,因为,所以,则.【点睛】本题考查了等差数列的证明,考查了等差数列及等比数列的前项和公式的应用,考查了学生的计算求解能力,属于中档题.19、(1)(2)存在,【解析】
由数列为“数列”可得,,,两式相减得,又,利用等比数列通项公式即可求出,进而求出;由题意得,,,两式相减得,,据此可得,当时,,进而可得,即数列为常数列,进而可得,结合,得到关于的不等式,再由时,且为整数即可求出符合题意的的所有值.【详解】因为数列为“数列”,所以,故,两式相减得,在中令,则可得,故所以,所以数列是以为首项,以为公比的等比数列,所以,因为,所以.(2)由题意得,故,两式相减得所以,当时,又因为所以当时,所以成立,所以当时,数列是常数列,所以因为当时,成立,所以,所以在中令,因为,所以可得,所以,由时,且为整数,可得,把分别代入不等式可得,,所以存在数列符合题意,的所有值为.【点睛】本题考查数列的新定义、等比数列的通项公式和数列递推公式的运用;考查运算求解能力、逻辑推理能力和对新定义的理解能力;通过反复利用递推公式,得到数列为常数列是求解本题的关键;属于综合型强、难度大型试题.20、解:设特征向量为α=对应的特征值为λ,则=λ,即因为k≠0,所以a=2.5分因为,所以A=,即=,所以2+k=3,解得k=2.综上,a=2,k=2.20分【解析】试题分析:由特征向量求矩阵A,由逆矩阵求k考点:特征向量,逆矩阵点评:本题主要考查了二阶矩
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度影视作品版权转让与授权合同
- 2025年中国高校资产行业发展前景预测及投资方向研究报告
- 2025年蹊跷板行业深度研究分析报告
- 2025年度创新园区物业服务收费标准及细则
- 2025年气体压缩机行业深度研究分析报告
- 2025年全数字化调光控制设备行业深度研究分析报告
- 2025年度建筑工程施工安全风险评估与治理服务协议
- 2025年度品质生活住宅交房与品质物业管理服务协议
- 2025年起动杆销项目投资可行性研究分析报告
- 2025年度高端餐饮空间装修设计与施工合同范本
- 企业资产管理培训
- 自然辩证法学习通超星期末考试答案章节答案2024年
- 2024年4月27日浙江省事业单位招聘《职业能力倾向测验》试题
- 物业管理服务应急响应方案
- 风车的原理小班课件
- 物业保洁员劳动竞赛理论知识考试题库500题(含答案)
- 国家职业技术技能标准 4-07-07-01 洗衣师 劳社厅发20081号
- 六年级数学竞赛试题及答案(六套)
- 七年级下学期数学开学第一课课件
- 临床诊疗指南-口腔医学分册
- 《中国心血管健康与疾病报告2024》要点解读
评论
0/150
提交评论