版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年广东省普宁第二中学高三数学第一学期期末质量检测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.数列{an}是等差数列,a1=1,公差d∈[1,2],且a4+λa10+a16=15,则实数λ的最大值为()A. B. C. D.2.在复平面内,复数(为虚数单位)对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限3.已知条件,条件直线与直线平行,则是的()A.充要条件 B.必要不充分条件 C.充分不必要条件 D.既不充分也不必要条件4.某几何体的三视图如图所示,三视图是腰长为1的等腰直角三角形和边长为1的正方形,则该几何体中最长的棱长为().A. B. C.1 D.5.已知函数,若函数的所有零点依次记为,且,则()A. B. C. D.6.已知复数,(为虚数单位),若为纯虚数,则()A. B.2 C. D.7.设,是双曲线的左,右焦点,是坐标原点,过点作的一条渐近线的垂线,垂足为.若,则的离心率为()A. B. C. D.8.已知函数,,且在上是单调函数,则下列说法正确的是()A. B.C.函数在上单调递减 D.函数的图像关于点对称9.在中,,,,则在方向上的投影是()A.4 B.3 C.-4 D.-310.椭圆的焦点为,点在椭圆上,若,则的大小为()A. B. C. D.11.已知函数,若,使得,则实数的取值范围是()A. B.C. D.12.在原点附近的部分图象大概是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知函数是定义在上的奇函数,则的值为__________.14.若点为点在平面上的正投影,则记.如图,在棱长为1的正方体中,记平面为,平面为,点是线段上一动点,.给出下列四个结论:①为的重心;②;③当时,平面;④当三棱锥的体积最大时,三棱锥外接球的表面积为.其中,所有正确结论的序号是________________.15.已知i为虚数单位,复数,则=_______.16.已知,,,则的最小值是__.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在平面直角坐标系中,已知椭圆的短轴长为,直线与椭圆相交于两点,线段的中点为.当与连线的斜率为时,直线的倾斜角为(1)求椭圆的标准方程;(2)若是以为直径的圆上的任意一点,求证:18.(12分)已知首项为2的数列满足.(1)证明:数列是等差数列.(2)令,求数列的前项和.19.(12分)如图,在四棱锥中,平面,四边形为正方形,点为线段上的点,过三点的平面与交于点.将①,②,③中的两个补充到已知条件中,解答下列问题:(1)求平面将四棱锥分成两部分的体积比;(2)求直线与平面所成角的正弦值.20.(12分)已知函数.(1)若不等式有解,求实数的取值范围;(2)函数的最小值为,若正实数,,满足,证明:.21.(12分)已知函数,.(1)求函数在处的切线方程;(2)当时,证明:对任意恒成立.22.(10分)已知等差数列an,和等比数列b(I)求数列{an}(II)求数列n2an⋅a
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】
利用等差数列通项公式推导出λ,由d∈[1,2],能求出实数λ取最大值.【详解】∵数列{an}是等差数列,a1=1,公差d∈[1,2],且a4+λa10+a16=15,∴1+3d+λ(1+9d)+1+15d=15,解得λ,∵d∈[1,2],λ2是减函数,∴d=1时,实数λ取最大值为λ.故选D.【点睛】本题考查实数值的最大值的求法,考查等差数列的性质等基础知识,考查运算求解能力,是基础题.2、C【解析】
化简复数为、的形式,可以确定对应的点位于的象限.【详解】解:复数故复数对应的坐标为位于第三象限故选:.【点睛】本题考查复数代数形式的运算,复数和复平面内点的对应关系,属于基础题.3、C【解析】
先根据直线与直线平行确定的值,进而即可确定结果.【详解】因为直线与直线平行,所以,解得或;即或;所以由能推出;不能推出;即是的充分不必要条件.故选C【点睛】本题主要考查充分条件和必要条件的判定,熟记概念即可,属于基础题型.4、B【解析】
首先由三视图还原几何体,进一步求出几何体的棱长.【详解】解:根据三视图还原几何体如图所示,所以,该四棱锥体的最长的棱长为.故选:B.【点睛】本题主要考查由三视图还原几何体,考查运算能力和推理能力,属于基础题.5、C【解析】
令,求出在的对称轴,由三角函数的对称性可得,将式子相加并整理即可求得的值.【详解】令,得,即对称轴为.函数周期,令,可得.则函数在上有8条对称轴.根据正弦函数的性质可知,将以上各式相加得:故选:C.【点睛】本题考查了三角函数的对称性,考查了三角函数的周期性,考查了等差数列求和.本题的难点是将所求的式子拆分为的形式.6、C【解析】
把代入,利用复数代数形式的除法运算化简,由实部为0且虚部不为0求解即可.【详解】∵,∴,∵为纯虚数,∴,解得.故选C.【点睛】本题考查复数代数形式的除法运算,考查复数的基本概念,是基础题.7、B【解析】
设过点作的垂线,其方程为,联立方程,求得,,即,由,列出相应方程,求出离心率.【详解】解:不妨设过点作的垂线,其方程为,由解得,,即,由,所以有,化简得,所以离心率.故选:B.【点睛】本题主要考查双曲线的概念、直线与直线的位置关系等基础知识,考查运算求解、推理论证能力,属于中档题.8、B【解析】
根据函数,在上是单调函数,确定,然后一一验证,A.若,则,由,得,但.B.由,,确定,再求解验证.C.利用整体法根据正弦函数的单调性判断.D.计算是否为0.【详解】因为函数,在上是单调函数,所以,即,所以,若,则,又因为,即,解得,而,故A错误.由,不妨令,得由,得或当时,,不合题意.当时,,此时所以,故B正确.因为,函数,在上是单调递增,故C错误.,故D错误.故选:B【点睛】本题主要考查三角函数的性质及其应用,还考查了运算求解的能力,属于较难的题.9、D【解析】分析:根据平面向量的数量积可得,再结合图形求出与方向上的投影即可.详解:如图所示:,,,又,,在方向上的投影是:,故选D.点睛:本题考查了平面向量的数量积以及投影的应用问题,也考查了数形结合思想的应用问题.10、C【解析】
根据椭圆的定义可得,,再利用余弦定理即可得到结论.【详解】由题意,,,又,则,由余弦定理可得.故.故选:C.【点睛】本题考查椭圆的定义,考查余弦定理,考查运算能力,属于基础题.11、C【解析】试题分析:由题意知,当时,由,当且仅当时,即等号是成立,所以函数的最小值为,当时,为单调递增函数,所以,又因为,使得,即在的最小值不小于在上的最小值,即,解得,故选C.考点:函数的综合问题.【方法点晴】本题主要考查了函数的综合问题,其中解答中涉及到基本不等式求最值、函数的单调性及其应用、全称命题与存在命题的应用等知识点的综合考查,试题思维量大,属于中档试题,着重考查了学生分析问题和解答问题的能力,以及转化与化归思想的应用,其中解答中转化为在的最小值不小于在上的最小值是解答的关键.12、A【解析】
分析函数的奇偶性,以及该函数在区间上的函数值符号,结合排除法可得出正确选项.【详解】令,可得,即函数的定义域为,定义域关于原点对称,,则函数为奇函数,排除C、D选项;当时,,,则,排除B选项.故选:A.【点睛】本题考查利用函数解析式选择函数图象,一般要分析函数的定义域、奇偶性、单调性、零点以及函数值符号,考查分析问题和解决问题的能力,属于中等题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
先利用辅助角公式将转化成,根据函数是定义在上的奇函数得出,从而得出函数解析式,最后求出即可.【详解】解:,又因为定义在上的奇函数,则,则,又因为,所以,,所以.故答案为:【点睛】本题考查三角函数的化简,三角函数的奇偶性和三角函数求值,考查了基本知识的应用能力和计算能力,是基础题.14、①②③【解析】
①点在平面内的正投影为点,而正方体的体对角线与和它不相交的的面对角线垂直,所以直线垂直于平面,而为正三角形,可得为正三角形的重心,所以①是正确的;②取的中点,连接,则点在平面的正投影在上,记为,而平面平面,所以,所以②正确;③若设,则由可得,然后对应边成比例,可解,所以③正确;④由于,而的面积是定值,所以当点到平面的距离最大时,三棱锥的体积最大,而当点与点重合时,点到平面的距离最大,此时为棱长为的正四面体,其外接球半径,则球,所以④错误.【详解】因为,连接,则有平面平面为正三角形,所以为正三角形的中心,也是的重心,所以①正确;由平面,可知平面平面,记,由,可得平面平面,则,所以②正确;若平面,则,设由得,易得,由,则,由得,,解得,所以③正确;当与重合时,最大,为棱长为的正四面体,其外接球半径,则球,所以④错误.故答案为:①②③【点睛】此题考查立体几何中的垂直、平行关系,求几何体的体积,考查空间想象能力和推理能力,属于难题.15、【解析】
先把复数进行化简,然后利用求模公式可得结果.【详解】.故答案为:.【点睛】本题主要考查复数模的求解,利用复数的运算把复数化为的形式是求解的关键,侧重考查数学运算的核心素养.16、.【解析】
因为,展开后利用基本不等式,即可得到本题答案.【详解】由,得,所以,当且仅当,取等号.故答案为:【点睛】本题主要考查利用基本不等式求最值,考查学生的转化能力和运算求解能力.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)详见解析.【解析】
(1)由短轴长可知,设,,由设而不求法作差即可求得,将相应值代入即求得,椭圆方程可求;(2)考虑特殊位置,即直线与轴垂直时候,成立,当直线斜率存在时,设出直线方程,与椭圆联立,结合中点坐标公式,弦长公式,得到与的关系,将表示出来,结合基本不等式求最值,证明最后的结果【详解】解:(1)由已知,得由,两式相减,得根据已知条件有,当时,∴,即∴椭圆的标准方程为(2)当直线斜率不存在时,,不等式成立.当直线斜率存在时,设由得∴,∴由化简,得∴令,则当且仅当时取等号∴∵∴当且仅当时取等号综上,【点睛】本题为直线与椭圆的综合应用,考查了椭圆方程的求法,点差法处理多未知量问题,能够利用一元二次方程的知识转化处理复杂的计算形式,要求学生计算能力过关,为较难题18、(1)见解析;(2)【解析】
(1)由原式可得,等式两端同时除以,可得到,即可证明结论;(2)由(1)可求得的表达式,进而可求得的表达式,然后求出的前项和即可.【详解】(1)证明:因为,所以,所以,从而,因为,所以,故数列是首项为1,公差为1的等差数列.(2)由(1)可知,则,因为,所以,则.【点睛】本题考查了等差数列的证明,考查了等差数列及等比数列的前项和公式的应用,考查了学生的计算求解能力,属于中档题.19、(1);(2).【解析】
若补充②③根据已知可得平面,从而有,结合,可得平面,故有,而,得到,②③成立与①②相同,①③成立,可得,所以任意补充两个条件,结果都一样,以①②作为条件分析;(1)设,可得,进而求出梯形的面积,可求出,即可求出结论;(2),以为坐标原点,建立空间坐标系,求出坐标,由(1)得为平面的法向量,根据空间向量的线面角公式即可求解.【详解】第一种情况:若将①,②作为已知条件,解答如下:(1)设平面为平面.∵,∴平面,而平面平面,∴,又为中点.设,则.在三角形中,,由知平面,∴,∴梯形的面积,,,平面,,,∴,故,.(2)如图,分别以所在直线为轴建立空间直角坐标系,设,则,由(1)得为平面的一个法向量,因为,所以直线与平面所成角的正弦值为.第二种情况:若将①,③作为已知条件,则由知平面,,又,所以平面,,又,故为中点,即,解答如上不变.第三种情况:若将②,③作为已知条件,由及第二种情况知,又,易知,解答仍如上不变.【点睛】本题考查空间点、线、面位置关系,以及体积、直线与平面所成的角,考查计算求解能力,属于中档题.20、(1)(2)见解析【解析】
(1)分离得到,求的最小值即可求得的取值范围;(2)先求出,得到,利用乘变化即可证明不等式.【详解】解:(1)设,∴在上单调递减,在上单调递增.故.∵有解,∴.即的取值范围为.(2),当且仅当时等号成立.∴,即.∵.当且仅当,,时等号成立.∴,即成立.【点睛】此题考查不等式的证明,注意定值乘变化的灵活应用,属于较易题目.21、(1)(2)见解析【解析】
(1)因为,可得,即可求得答案;(2)要证对任意恒成立,即证对任意恒成立.设,,当时,,即可求得答案.【详解】(1),,,函数在处的切线方程为.(2)要证对任意恒成立.即证对任意恒成立.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 淮阴师范学院《体育舞蹈专项理论与实践(6)》2021-2022学年第一学期期末试卷
- 淮阴师范学院《科学社会主义理论与实践》2022-2023学年第一学期期末试卷
- 淮阴师范学院《工程造价案例分析》2022-2023学年第一学期期末试卷
- 淮阴师范学院《电磁场与电磁波》2021-2022学年期末试卷
- 淮阴工学院《移动平台应用开发》2023-2024学年期末试卷
- 淮阴工学院《外国文学》2022-2023学年第一学期期末试卷
- DB3711-T 157-2024苹果生产社会化服务规范
- 学前教育:安全礼仪不玩餐具教案
- 中地数码集团实习报告
- 合成材料制造中的绿色工艺与生产方式考核试卷
- 部编版小学语文三年级上册基础知识试题含答案(全册)
- S7-1200PLC技术及应用 课件 项目17 步进电机控制
- 2024年中国老年糖尿病诊疗指南解读(2024年版)
- 《生物技术制药》课程介绍与教学大纲
- 第30课 家居收纳技巧 课件 2023-2024学年苏教版初中劳动技术七年级上册
- 2024年福建漳平闽投抽水蓄能有限公司招聘笔试冲刺题(带答案解析)
- 2024中国一汽校园招聘1000+岗位高频考题难、易错点模拟试题(共500题)附带答案详解
- GB/T 19533-2024汽车用压缩天然气钢瓶定期检验与评定
- MH-T 5011-2019民用机场沥青道面施工技术规范
- 安捷伦气相色谱仪原理
- 在线网课学习知道《婺文化英语教程(上海财大浙江学院)》单元测试考核答案
评论
0/150
提交评论