版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山南市重点名校2024届中考数学考试模拟冲刺卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(共10小题,每小题3分,共30分)1.如图,平行于x轴的直线与函数,的图象分别相交于A,B两点,点A在点B的右侧,C为x轴上的一个动点,若的面积为4,则的值为A.8 B. C.4 D.2.如图,点M为▱ABCD的边AB上一动点,过点M作直线l垂直于AB,且直线l与▱ABCD的另一边交于点N.当点M从A→B匀速运动时,设点M的运动时间为t,△AMN的面积为S,能大致反映S与t函数关系的图象是()A. B. C. D.3.由若干个相同的小立方体搭成的几何体的三视图如图所示,则搭成这个几何体的小立方体的个数是()A.3 B.4 C.5 D.64.一元二次方程mx2+mx﹣=0有两个相等实数根,则m的值为()A.0 B.0或﹣2 C.﹣2 D.25.下列图案中,是轴对称图形的是()A. B. C. D.6.已知⊙O的半径为13,弦AB∥CD,AB=24,CD=10,则四边形ACDB的面积是()A.119 B.289 C.77或119 D.119或2897.﹣的相反数是()A.8 B.﹣8 C. D.﹣8.方程x2﹣3x=0的根是()A.x=0 B.x=3 C., D.,9.如图是一个几何体的三视图,则这个几何体是()A. B. C. D.10.如图是小强用八块相同的小正方体搭建的一个积木,它的左视图是()A. B. C. D.二、填空题(本大题共6个小题,每小题3分,共18分)11.如图,在△ABC中,∠C=90°,AC=8,BC=6,点D是AB的中点,点E在边AC上,将△ADE沿DE翻折,使点A落在点A′处,当A′E⊥AC时,A′B=____.12.比较大小:3_________(填<,>或=).13.阅读材料:如图,C为线段BD上一动点,分别过点B、D作AB⊥BD,ED⊥BD,连接AC、EC.设CD=x,若AB=4,DE=2,BD=8,则可用含x的代数式表示AC+CE的长为.然后利用几何知识可知:当A、C、E在一条直线上时,x=时,AC+CE的最小值为1.根据以上阅读材料,可构图求出代数式的最小值为_____.14.如图,在3×3的正方形网格中,点A,B,C,D,E,F,G都是格点,从C,D,E,F,G五个点中任意取一点,以所取点及AB为顶点画三角形,所画三角形时等腰三角形的概率是_____.15.要使式子有意义,则的取值范围是__________.16.如图,、分别为△ABC的边、延长线上的点,且DE∥BC.如果,CE=16,那么AE的长为_______三、解答题(共8题,共72分)17.(8分)甲、乙两组工人同时开始加工某种零件,乙组在工作中有一次停产更换设备,更换设备后,乙组的工作效率是原来的2倍.两组各自加工零件的数量y(件)与时间x(时)之间的函数图象如下图所示.(1)求甲组加工零件的数量y与时间x之间的函数关系式.(2)求乙组加工零件总量a的值.18.(8分)如图,以AB边为直径的⊙O经过点P,C是⊙O上一点,连结PC交AB于点E,且∠ACP=60°,PA=PD.试判断PD与⊙O的位置关系,并说明理由;若点C是弧AB的中点,已知AB=4,求CE•CP的值.19.(8分)如图,两座建筑物的水平距离BC为40m,从D点测得A点的仰角为30°,B点的俯角为10°,求建筑物AB的高度(结果保留小数点后一位).参考数据sin10°≈0.17,cos10°≈0.98,tan10°≈0.18,取1.1.20.(8分)先化简,再求值:()÷,其中a=+1.21.(8分)如图,在△ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF,求证:AF=DC;若AB⊥AC,试判断四边形ADCF的形状,并证明你的结论.22.(10分)如图,某人在山坡坡脚C处测得一座建筑物顶点A的仰角为63.4°,沿山坡向上走到P处再测得该建筑物顶点A的仰角为53°.已知BC=90米,且B、C、D在同一条直线上,山坡坡度i=5:1.(1)求此人所在位置点P的铅直高度.(结果精确到0.1米)(2)求此人从所在位置点P走到建筑物底部B点的路程(结果精确到0.1米)(测倾器的高度忽略不计,参考数据:tan53°≈,tan63.4°≈2)23.(12分)光华农机租赁公司共有50台联合收割机,其中甲型20台,乙型30台,先将这50台联合收割机派往A、B两地区收割小麦,其中30台派往A地区,20台派往B地区.两地区与该农机租赁公司商定的每天的租赁价格见表:每台甲型收割机的租金每台乙型收割机的租金A地区18001600B地区16001200(1)设派往A地区x台乙型联合收割机,租赁公司这50台联合收割机一天获得的租金为y(元),求y与x间的函数关系式,并写出x的取值范围;(2)若使农机租赁公司这50台联合收割机一天获得的租金总额不低于79600元,说明有多少种分配方案,并将各种方案设计出来;(3)如果要使这50台联合收割机每天获得的租金最高,请你为光华农机租赁公司提一条合理化建议.24.已知关于x的一元二次方程x2﹣6x+(2m+1)=0有实数根.求m的取值范围;如果方程的两个实数根为x1,x2,且2x1x2+x1+x2≥20,求m的取值范围.
参考答案一、选择题(共10小题,每小题3分,共30分)1、A【解题分析】【分析】设,,根据反比例函数图象上点的坐标特征得出,根据三角形的面积公式得到,即可求出.【题目详解】轴,,B两点纵坐标相同,设,,则,,,,故选A.【题目点拨】本题考查了反比例函数图象上点的坐标特征,三角形的面积,熟知点在函数的图象上,则点的坐标满足函数的解析式是解题的关键.2、C【解题分析】分析:本题需要分两种情况来进行计算得出函数解析式,即当点N和点D重合之前以及点M和点B重合之前,根据题意得出函数解析式.详解:假设当∠A=45°时,AD=2,AB=4,则MN=t,当0≤t≤2时,AM=MN=t,则S=,为二次函数;当2≤t≤4时,S=t,为一次函数,故选C.点睛:本题主要考查的就是函数图像的实际应用问题,属于中等难度题型.解答这个问题的关键就是得出函数关系式.3、B【解题分析】分析:从俯视图中可以看出最底层小正方体的个数及形状,从主视图可以看出每一层小正方体的层数和个数,从而算出总的个数.解答:解:从主视图看第一列两个正方体,说明俯视图中的左边一列有两个正方体,主视图右边的一列只有一行,说明俯视图中的右边一行只有一列,所以此几何体共有四个正方体.故选B.4、C【解题分析】
由方程有两个相等的实数根,得到根的判别式等于0,求出m的值,经检验即可得到满足题意m的值.【题目详解】∵一元二次方程mx1+mx﹣=0有两个相等实数根,∴△=m1﹣4m×(﹣)=m1+1m=0,解得:m=0或m=﹣1,经检验m=0不合题意,则m=﹣1.故选C.【题目点拨】此题考查了根的判别式,根的判别式的值大于0,方程有两个不相等的实数根;根的判别式的值等于0,方程有两个相等的实数根;根的判别式的值小于0,方程没有实数根.5、B【解题分析】
根据轴对称图形的定义,逐一进行判断.【题目详解】A、C是中心对称图形,但不是轴对称图形;B是轴对称图形;D不是对称图形.故选B.【题目点拨】本题考查的是轴对称图形的定义.6、D【解题分析】
分两种情况进行讨论:①弦AB和CD在圆心同侧;②弦AB和CD在圆心异侧;作出半径和弦心距,利用勾股定理和垂径定理,然后按梯形面积的求解即可.【题目详解】解:①当弦AB和CD在圆心同侧时,如图1,∵AB=24cm,CD=10cm,∴AE=12cm,CF=5cm,∴OA=OC=13cm,∴EO=5cm,OF=12cm,∴EF=12-5=7cm;∴四边形ACDB的面积②当弦AB和CD在圆心异侧时,如图2,∵AB=24cm,CD=10cm,∴.AE=12cm,CF=5cm,∵OA=OC=13cm,∴EO=5cm,OF=12cm,∴EF=OF+OE=17cm.∴四边形ACDB的面积∴四边形ACDB的面积为119或289.故选:D.【题目点拨】本题考查了勾股定理和垂径定理的应用.此题难度适中,解题的关键是注意掌握数形结合思想与分类讨论思想的应用,小心别漏解.7、C【解题分析】互为相反数的两个数是指只有符号不同的两个数,所以的相反数是,故选C.8、D【解题分析】
先将方程左边提公因式x,解方程即可得答案.【题目详解】x2﹣3x=0,x(x﹣3)=0,x1=0,x2=3,故选:D.【题目点拨】本题考查解一元二次方程,解一元二次方程的常用方法有:配方法、直接开平方法、公式法、因式分解法等,熟练掌握并灵活运用适当的方法是解题关键.9、B【解题分析】试题分析:结合三个视图发现,应该是由一个正方体在一个角上挖去一个小正方体,且小正方体的位置应该在右上角,故选B.考点:由三视图判断几何体.10、D【解题分析】
左视图从左往右,2列正方形的个数依次为2,1,依此得出图形D正确.故选D.【题目详解】请在此输入详解!二、填空题(本大题共6个小题,每小题3分,共18分)11、或7【解题分析】
分两种情况:①如图1,作辅助线,构建矩形,先由勾股定理求斜边AB=10,由中点的定义求出AD和BD的长,证明四边形HFGB是矩形,根据同角的三角函数列式可以求DG和DF的长,并由翻折的性质得:∠DA'E=∠A,A'D=AD=5,由矩形性质和勾股定理可以得出结论:A'B=;②如图2,作辅助线,构建矩形A'MNF,同理可以求出A'B的长.【题目详解】解:分两种情况:如图1,过D作DG⊥BC与G,交A'E与F,过B作BH⊥A'E与H,D为AB的中点,BD=AB=AD,∠C=,AC=8,BC=6,AB=10,BD=AD=5,sin∠ABC=,DG=4,由翻折得:∠DA'E=∠A,A'D=AD=5,sin∠DA'E=sin∠A=.DF=3,FG=4-3=1,A'E⊥AC,BC⊥AC,A'E//BC,∠HFG+∠DGB=,∠DGB=,∠HFG=,∠EHB=,四边形HFGB是矩形,BH=FG=1,同理得:A'E=AE=8-1=7,A'H=A'E-EH=7-6=1,在Rt△AHB中,由勾股定理得:A'B=.如图2,过D作MN//AC,交BC与于N,过A'作A'F//AC,交BC的延长线于F,延长A'E交直线DN于M,A'E⊥AC,A'M⊥MN,A'E⊥A'F,∠M=∠MA'F=,∠ACB=,∠F=∠ACB=,四边形MA'FN県矩形,MN=A'F,FN=A'M,由翻折得:A'D=AD=5,Rt△A'MD中,DM=3,A'M=4,FN=A'M=4,Rt△BDN中,BD=5,DN=4,BN=3,A'F=MN=DM+DN=3+4=7,BF=BN+FN=3+4=7,Rt△ABF中,由勾股定理得:A'B=;综上所述,A'B的长为或.故答案为:或.【题目点拨】本题主要考查三角形翻转后的性质,注意不同的情况需分情况讨论.12、<【解题分析】【分析】根据实数大小比较的方法进行比较即可得答案.【题目详解】∵32=9,9<10,∴3<,故答案为:<.【题目点拨】本题考查了实数大小的比较,熟练掌握实数大小比较的方法是解题的关键.13、4【解题分析】
根据已知图象,重新构造直角三角形,利用三角形相似得出CD的长,进而利用勾股定理得出最短路径问题.【题目详解】如图所示:C为线段BD上一动点,分别过点B、D作AB⊥BD,ED⊥BD,连接AC、EC.设CD=x,若AB=5,DE=3,BD=12,当A,C,E,在一条直线上,AE最短,∵AB⊥BD,ED⊥BD,∴AB∥DE,∴△ABC∽EDC,∴,∴,解得:DC=.即当x=时,代数式有最小值,此时为:.故答案是:4.【题目点拨】考查最短路线问题,利用了数形结合的思想,可通过构造直角三角形,利用勾股定理求解.14、.【解题分析】
找出从C,D,E,F,G五个点中任意取一点组成等腰三角形的个数,再根据概率公式即可得出结论.【题目详解】∵从C,D,E,F,G五个点中任意取一点共有5种情况,其中A、B、C;A、B、F两种取法,可使这三定组成等腰三角形,∴所画三角形时等腰三角形的概率是,故答案是:.【题目点拨】考查的是概率公式,熟记随机事件A的概率P(A)=事件A可能出现的结果数与所有可能出现的结果数的商是解答此题的关键.15、【解题分析】
根据二次根式被开方数必须是非负数的条件可得关于x的不等式,解不等式即可得.【题目详解】由题意得:2-x≥0,解得:x≤2,故答案为x≤2.16、1【解题分析】
根据DE∥BC,得到,再代入AC=11-AE,则可求AE长.【题目详解】∵DE∥BC,∴.∵,CE=11,∴,解得AE=1.故答案为1.【题目点拨】本题主要考查相似三角形的判定和性质,正确写出比例式是解题的关键.三、解答题(共8题,共72分)17、(1)y=60x;(2)300【解题分析】
(1)由题图可知,甲组的y是x的正比例函数.设甲组加工的零件数量y与时间x的函数关系式为y=kx.根据题意,得6k=360,解得k=60.所以,甲组加工的零件数量y与时间x之间的关系式为y=60x.(2)当x=2时,y=100.因为更换设备后,乙组工作效率是原来的2倍.所以,解得a=300.18、(1)PD是⊙O的切线.证明见解析.(2)1.【解题分析】试题分析:(1)连结OP,根据圆周角定理可得∠AOP=2∠ACP=120°,然后计算出∠PAD和∠D的度数,进而可得∠OPD=90°,从而证明PD是⊙O的切线;(2)连结BC,首先求出∠CAB=∠ABC=∠APC=45°,然后可得AC长,再证明△CAE∽△CPA,进而可得,然后可得CE•CP的值.试题解析:(1)如图,PD是⊙O的切线.证明如下:连结OP,∵∠ACP=60°,∴∠AOP=120°,∵OA=OP,∴∠OAP=∠OPA=30°,∵PA=PD,∴∠PAO=∠D=30°,∴∠OPD=90°,∴PD是⊙O的切线.(2)连结BC,∵AB是⊙O的直径,∴∠ACB=90°,又∵C为弧AB的中点,∴∠CAB=∠ABC=∠APC=45°,∵AB=4,AC=Absin45°=.∵∠C=∠C,∠CAB=∠APC,∴△CAE∽△CPA,∴,∴CP•CE=CA2=()2=1.考点:相似三角形的判定与性质;圆心角、弧、弦的关系;直线与圆的位置关系;探究型.19、建筑物AB的高度约为30.3m.【解题分析】分析:过点D作DE⊥AB,利用解直角三角形的计算解答即可.详解:如图,根据题意,BC=2,∠DCB=90°,∠ABC=90°.过点D作DE⊥AB,垂足为E,则∠DEB=90°,∠ADE=30°,∠BDE=10°,可得四边形DCBE为矩形,∴DE=BC=2.在Rt△ADE中,tan∠ADE=,∴AE=DE•tan30°=.在Rt△DEB中,tan∠BDE=,∴BE=DE•tan10°=2×0.18=7.2,∴AB=AE+BE=23.09+7.2=30.29≈30.3.答:建筑物AB的高度约为30.3m.点睛:考查解直角三角形的应用﹣仰角俯角问题,要求学生能借助俯角构造直角三角形并解直角三角形.20、,.【解题分析】
根据分式的减法和除法可以化简题目中的式子,然后将a的值代入化简后的式子即可解答本题.【题目详解】解:()÷====,当a=+1时,原式==.【题目点拨】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.21、(1)见解析(2)见解析【解题分析】
(1)根据AAS证△AFE≌△DBE,推出AF=BD,即可得出答案.(2)得出四边形ADCF是平行四边形,根据直角三角形斜边上中线性质得出CD=AD,根据菱形的判定推出即可.【题目详解】解:(1)证明:∵AF∥BC,∴∠AFE=∠DBE.∵E是AD的中点,AD是BC边上的中线,∴AE=DE,BD=CD.在△AFE和△DBE中,∵∠AFE=∠DBE,∠FEA=∠BED,AE=DE,∴△AFE≌△DBE(AAS)∴AF=BD.∴AF=DC.(2)四边形ADCF是菱形,证明如下:∵AF∥BC,AF=DC,∴四边形ADCF是平行四边形.∵AC⊥AB,AD是斜边BC的中线,∴AD=DC.∴平行四边形ADCF是菱形22、(1)此人所在P的铅直高度约为14.3米;(2)从P到点B的路程约为17.1米【解题分析】分析:(1)过P作PF⊥BD于F,作PE⊥AB于E,设PF=5x,在Rt△ABC中求出AB,用含x的式子表示出AE,EP,由tan∠APE,求得x即可;(2)在Rt△CPF中,求出CP的长.详解:过P作PF⊥BD于F,作PE⊥AB于E,∵斜坡的坡度i=5:1,设PF=5x,CF=1x,∵四边形BFPE为矩形,∴BF=PEPF=BE.在RT△ABC中,BC=90,tan∠ACB=,∴AB=tan63.4°×BC≈2×90=180,∴AE=AB-BE=AB-PF=180-5x,EP=BC+CF≈90+10x.在RT△AEP中,tan∠APE=,∴x=,∴PF=5x=.答:此人所在P的铅直高度约为14.3米.由(1)得CP=13x,∴CP=13×37.1,BC+CP=90+37.1=17.1.答:从P到点B的路程约为17.1米.点睛:本题考查了解直角三角形的应用,关键是正确的画出与实际问题相符合的几何图形,找出图形中的相关线段或角的实际意义及所要解决的问题,构造直角三角形,用勾股定理或三角函数求相应的线段长.23、(1)y=200x+74000(10≤x≤30)(2)有三种分配方案,方案一:派往A地区的甲型联合收割机2台,乙型联合收割机28台,其余的全派往B地区;方案二:派往A地区的甲型联合收割机1台,乙型联合收割机29台,其余的全派往B地区;方案三:派往A地区的甲型联合收割机0台,乙型联合收割机30台,其余的全派往B地区;(3)派往A地区30台乙型联合收割机,20台甲型联合收割机全部派往B地区,使该公司50台收割机每天获得租金最高.【解题分析】
(1)根据题意和表格中的数据可以得到y关于x的函数关系式;
(2)根据题意可以得到相应的不等式,从而可以解答本题;
(3)根据(1)中的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 安装工程综合险种2024年保险协议
- 2024跨国劳务输出协议范例
- 2024食堂运营管理承包协议条款细则
- 2024年协议执行保证金协议格式指南
- 2024届THUSSAT北京市清华大学中学高三下学期领军考试数学试题
- 保姆服务协议:老年照护专项
- 2024年专业接驳车配件订购协议格式
- DB11∕T 1650-2019 工业开发区循环化技术规范
- 2024年工程现场工长职务聘用协议
- 2024年财务总监职业协议范本
- 急性肾损伤PPT通用课件
- 客服话术大全-
- 高标准基本农田建设监理工作总结
- 机电安装工程技术专业培训
- 7逆合成分析法与合成路线设计
- 工程材料构配件设备报审表
- 《Monsters 怪兽》中英对照歌词
- 华东地区SMT公司信息
- 隧道弃渣及弃渣场处理方案
- 隔代教育PPT课件
- 签证用完整户口本英文翻译模板
评论
0/150
提交评论