版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
专题1.3空间向量的数量积运算-重难点题型精讲1.空间向量的夹角(1)定义:已知两个非零向量a,b,在空间任取一点O,作eq\o(OA,\s\up6(→))=a,eq\o(OB,\s\up6(→))=b,则∠AOB叫做向量a,b的夹角,记作〈a,b〉.(2)范围:0≤〈a,b〉≤π.特别地,当〈a,b〉=eq\f(π,2)时,a⊥b.2.空间向量的数量积定义已知两个非零向量a,b,则|a||b|cos〈a,b〉叫做a,b的数量积,记作a·b.即a·b=|a||b|cos〈a,b〉.规定:零向量与任何向量的数量积都为0.性质①a⊥b⇔a·b=0②a·a=a2=|a|2运算律①(λa)·b=λ(a·b),λ∈R.②a·b=b·a(交换律).③a·(b+c)=a·b+a·c(分配律).3.向量SKIPIF1<0的投影(1)如图(1),在空间,向量a向向量b投影,由于它们是自由向量,因此可以先将它们平移到同一个平面α内,进而利用平面上向量的投影,得到与向量b共线的向量c,c=|a|cos〈a,b〉eq\f(b,|b|),向量c称为向量a在向量b上的投影向量.类似地,可以将向量a向直线l投影(如图(2)).(2)如图(3),向量a向平面β投影,就是分别由向量a的起点A和终点B作平面β的垂线,垂足分别为A′,B′,得到eq\o(A′B′,\s\up6(→)),向量eq\o(A′B′,\s\up6(→))称为向量a在平面β上的投影向量.这时,向量a,eq\o(A′B′,\s\up6(→))的夹角就是向量a所在直线与平面β所成的角.【题型1数量积的计算】求空间向量数量积的步骤:(1)将各向量分解成已知模和夹角的向量的组合形式.(2)利用向量的运算律将数量积展开,转化为已知模和夹角的向量的数量积.(3)代入SKIPIF1<0求解.【例1】(2021秋•温州期末)已知四面体ABCD,所有棱长均为2,点E,F分别为棱AB,CD的中点,则AF→A.1 B.2 C.﹣1 D.﹣2【变式1-1】(2021秋•沈河区校级期末)已知空间四边形ABCD的每条边和对角线的长都为a,E,F,G分别是AB,AD,DC的中点,则GE→•GFA.2a28 B.a28 C.【变式1-2】(2021秋•南海区校级月考)在棱长为1的正方体ABCD﹣A1B1C1D1中,设AB→=a→,AD→A.1 B.0 C.﹣1 D.﹣2【变式1-3】(2022春•南明区校级月考)已知MN是棱长为4的正方体内切球的一条直径,点P在正方体表面上运动,则PM→A.4 B.12 C.8 D.6【题型2向量的夹角及其应用】求两个向量的夹角:利用公式SKIPIF1<0=SKIPIF1<0求SKIPIF1<0,进而确定SKIPIF1<0.【例2】(2021秋•定远县期末)已知正方体ABCD﹣A′B′C′D′的棱长为a,设AB→=a→,AD→=bA.30° B.60° C.90° D.120°【变式2-1】(2021秋•吉安期末)已知空间中四个不共面的点O、A、B、C,若|OB→|=|OC→|,且cos<OA→,OB→>=cos<OAA.1 B.12 C.32 D【变式2-2】(2020秋•洪泽县校级期末)空间四边形OABC中,OB=6,OC=4,BC=4,∠AOB=∠AOC=π3,则cos<OA→,【变式2-3】(2021秋•玉林期末)如图,在△ABC和△AEF中,B是EF的中点,AB=2,EF=4,CA=CB=3,若AB→⋅AE→+AC→⋅AF【题型3利用数量积求向量的模】求线段长度(距离):①取此线段对应的向量;②用其他已知夹角和模的向量表示该向量;③利用SKIPIF1<0=SKIPIF1<0,计算出SKIPIF1<0,即得所求长度(距离).【例3】(2020秋•秦皇岛期末)在平行六面体(底面是平行四边形的四棱柱)ABCD﹣A1B1C1D1中,AB=AD=AA1=1,∠BAD=∠BAA1=∠DAA1=60°,则AC1的长为()A.3 B.3 C.6 D.6【变式3-1】(2022春•宝山区校级期中)如图,在大小为45°的二面角A﹣EF﹣D中,四边形ABFE与CDEF都是边长为1的正方形,则B与D两点间的距离是()A.3 B.2 C.1 D.3−【变式3-2】(2021秋•郑州期末)在平行六面体(底面是平行四边形的四棱柱)ABCD﹣A1B1C1D1中,AB=AD=AA1=1,∠BAD=∠BAA1=∠DAA1=60°,则AC1的长为()A.3 B.3 C.6 D.6【变式3-3】如图,圆台的高为4,上、下底面半径分别为3、5,M、N分别在上、下底面圆周上,且<O2M→,O1N→A.65 B.52 C.35 D.5【题型4向量垂直的应用】【例4】(2021秋•大连月考)已知a,b是异面直线,e1→,e2→分别为取自直线a,b上的单位向量,且a→=2e1→+3e2→,bA.﹣6 B.6 C.3 D.﹣3【变式4-1】(2022•浦东新区校级模拟)已知长方体ABCD﹣A1B1C1D1,下列向量的数量积一定不为0的是()A.AD1→⋅B1C→ B.B【变式4-2】若A,B,C,D是空间中不共面的四点,且满足AB→•AC→=AC→•AD→=A.钝角三角形 B.锐角三角形 C.直角三角形
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025版工业厂房消防安全检查与维护服务合同3篇
- 桥梁隧道工程-试验检测师《桥梁隧道工程》黑钻押题1
- 03蠕形住肠线虫58课件讲解
- 2025年大型机具运输协议
- 2025年公寓购买协议
- 2025年加工承揽合同的要素
- 2025年度铝合金门窗出口贸易合同范本8篇
- 2025年度私人宅基地买卖转让及农村环境保护服务协议
- 二零二五年度智能家居门窗安装服务协议
- 二零二五年度2025年度消防报警系统改造清包工服务协议
- 春节联欢晚会节目单课件模板
- 中国高血压防治指南(2024年修订版)
- 糖尿病眼病患者血糖管理
- 抖音音乐推广代运营合同样本
- 2024年电信综合部办公室主任年度述职报告(四篇合集)
- 微机原理与接口技术考试试题及答案(综合-必看)
- 湿疮的中医护理常规课件
- 初中音乐听课笔记20篇
- NUDD新独难异 失效模式预防检查表
- 内蒙古汇能煤电集团有限公司长滩露天煤矿矿山地质环境保护与土地复垦方案
- 排水干管通球试验记录表
评论
0/150
提交评论