人教A版高中数学(选择性必修三)同步培优讲义专题8.7 独立性检验的综合应用大题专项训练(30道)(教师版)_第1页
人教A版高中数学(选择性必修三)同步培优讲义专题8.7 独立性检验的综合应用大题专项训练(30道)(教师版)_第2页
人教A版高中数学(选择性必修三)同步培优讲义专题8.7 独立性检验的综合应用大题专项训练(30道)(教师版)_第3页
人教A版高中数学(选择性必修三)同步培优讲义专题8.7 独立性检验的综合应用大题专项训练(30道)(教师版)_第4页
人教A版高中数学(选择性必修三)同步培优讲义专题8.7 独立性检验的综合应用大题专项训练(30道)(教师版)_第5页
已阅读5页,还剩37页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

专题8.7独立性检验的综合应用大题专项训练(30道)【人教A版2019选择性必修第三册】姓名:___________班级:___________考号:___________1.(2023·贵州·统考一模)自限性疾病是指在发展到一定阶段后会自行恢复的疾病.已知某种自限性疾病在不用药物的情况下一般10天后就可康复.现在只有A药物是针对该自限性疾病的药物,为了解A药物对该自限性疾病的作用,研究者在患过该自限性疾病且康复的群体中随机选取了110人作为样本进行调查,并统计相关数据后得到如下的2×2列联表.已知在选取的110人中随机抽取1人,此人为小于10天康复者的概率为511,此人为未用药物者的概率为6康复情况用药情况小于10天康复10天后康复合计患病期用A药物30患病期未用药物合计110(1)请完成上面的列联表;(2)依据2×2列联表中的数据,判断能否有99%的把握认为患病期用A药物与小于10天康复有关.附:K2=nP0.1000.0500.0100.0050.001k2.7063.8416.6357.87910.828【解题思路】(1)根据小于10天康复者的概率为511,分得到小于10天康复者和10天后康复者人数,由未用药物者的概率为611,得到未用药物者和用药物者的人数,完成(2)由(1)求得K2【解答过程】(1)解:因为在选取的110人中随机抽取1人,此人为小于10天康复者的概率为511,所以小于10天康复者为5又此人为未用药物者的概率为611,所以未用药物者为6则2×2列联表如下表:康复情况用药情况小于10天康复10天后康复合计患病期用A药物302050患病期未用药物204060合计5060110(2)由(1)知:K2所以有99%的把握认为患病期用A药物与小于10天康复有关.2.(2023·贵州贵阳·统考一模)2022年9月3日至2022年10月8日,因为疫情,贵阳市部分高中学生只能居家学习,为了监测居家学习效果,某校在恢复正常教学后举行了一次考试,在考试中,发现学生总体成绩相较疫情前的成绩有明显下降.为了解学生成绩下降的原因,学校进行了问卷调查,从问卷中随机抽取了200份学生问卷,发现其中有96名学生成绩下降,在这些成绩下降的学生中有54名学生属于“长时间使用手机娱乐”(每天使用手机娱乐2个小时以上)的学生.(1)根据以上信息,完成下面的2×2列联表,并判断能否有99.5%长时间使用手机娱乐非长时间使用手机娱乐合计成绩下降成绩未下降合计90200(2)在被抽取的200名学生中“长时间使用手机娱乐”且“成绩未下降”的女生有12人,现从“长时间使用手机娱乐”且“成绩未下降”的学生中按性别分层抽样抽取6人,再从这6人中随机抽取2人进一步访谈,求被访谈的两人为一男一女的概率.参考公式:K2=nP0.150.100.050.0250.0100.0050.001k2.0722.7063.8415.0246.6357.87910.828【解题思路】(1)根据题意完成2×2列联表,计算K2,并与临界值对比分析(2)根据分层抽样求抽取的人数,利用列举法结合古典概型运算求解.【解答过程】(1)根基题意可得:2×2列联表如下:长时间使用手机娱乐非常时间使用手机娱乐合计学习成绩下降544296学习成绩未下降3668104合计90110200K2∴有99.5%(2)在抽取的6人中,女生有6×1236=2设女生为1,2,男生为a,b,c,d,从访谈的6人中抽取2人的基本事件共有15种:(1,2),(1,a),(1,b),(1,c),(1,d),(2,a),(2,b),(2,c),(2,d),(a,b),(a,c),(a,d),(b,c),(b,d),(c,d),设“被访谈的两人中一男一女生”为事件A,共有8种,则P(A)=83.(2023秋·辽宁辽阳·高二期末)某甜品屋店庆当天为酬谢顾客,当天顾客每消费满一百元获得一次抽奖机会,奖品分别为价值5元,10元,15元的甜品一份,每次抽奖,抽到价值为5元,10元,15元的甜品的概率分别为12,13,(1)若某人当天共获得两次抽奖机会,设这两次抽奖所获甜品价值之和为X元,求X的分布列与期望.(2)某大学“爱牙协会”为了解“爱吃甜食”与青少年“蛀牙”情况之间的关系,随机对200名青少年展开了调查,得知这200个人中共有120个人“有蛀牙”,其中“不爱吃甜食”但“有蛀牙”的有35人,“不爱吃甜食”且”无蛀牙”的也有35人.有蛀牙无蛀牙爱吃甜食不爱吃甜食完成上面的列联表,试根据小概率值α=0.05的独立性检验,分析“爱吃甜食”是否更容易导致青少年“蛀牙”.附:χ2=nα=P0.050.010.005k3.8416.6357.879【解题思路】(1)由题意可得X的所有可能取值为10,15,20,25,30,分别求出对应的概率,即可的X的分布列,从而求得数学期望;(2)由已知填充列联表,根据公式计算出χ2【解答过程】(1)由题意可得X的所有可能取值为10,15,20,25,30,PX=10PX=15PX=20PX=25PX=30则X的分布列为X1015202530P11511故EX(2)由题意可得列联表如下:有蛀牙无蛀牙爱吃甜食8545不爱吃甜食3535所有χ2查表可得Pχ因为χ2所以在犯错误的概率不超过5%的前提下,可以认为“爱吃甜食”与青少年“蛀牙”有关.4.(2023春·广西柳州·高三阶段练习)携号转网,也称作号码携带、移机不改号,即无需改变自己的手机号码,就能转换运营商,并享受其提供的各种服务.2019年11月27日,工信部宣布携号转网在全国范围正式启动.某运营商为提质量保客户,从运营系统中选出300名客户,对业务水平和服务水平的评价进行统计,其中业务水平的满意率为1315,服务水平的满意率为2(1)完成下面2×2列联表,并分析是否有99%的把握认为业务水平与服务水平有关;对服务水平满意人数对服务水平不满意人数合计对业务水平满意人数对业务水平不满意人数合计(2)为进一步提高服务质量在选出的对服务水平不满意的客户中,抽取2名征求改进意见,用X表示对业务水平不满意的人数,求X的分布列与期望.附:K2=nP0.100.050.0250.0100.0050.001k2.7063.8415.0246.6357.87910.828【解题思路】(1)利用题意可完成列联表,然后根据公式求出K2(2)根据题意结合超几何分布求分布列和期望【解答过程】(1)有题可得对业务水平满意的有300×1315=260对服务水平满意人数对服务水平不满意人数合计对业务水平满意人数18080260对业务水平不满意人数202040合计200100300经计算得K2所以没有99%的把握认为业务水平满意与服务水平满意有关;(2)X的可能值为0,1,2,P(X=0)=C802C100所以X的分布列如下X012P3163219则X的期望E(X)=0×3165.(2023·全国·模拟预测)某足球协会统计了以往甲是否担任某球队的主教练时该球队参赛胜与输的次数,得到数据如表所示:该球队胜的次数该球队输的次数甲担任主教练3030甲不担任主教练3010(1)根据小概率值α=0.05的独立性检验,能否认为该球队参赛的胜与输与甲是否担任主教练有关?(2)根据以往甲担任主教练的经验,在某场比赛中,甲在上半场、下半场与补时阶段用完3个换人名额(每支球队在比赛中只有3个换人名额)的概率分别为0.4,0.5,0.1,相应该球队输的概率分别为0.6,0.2,0.2,若在某场比赛中甲担任主教练,且该场比赛进行了补时赛,则在该球队输的条件下,求甲在下半场用完换人名额的概率.附:χ2=nα0.100.050.010.005x2.7063.8416.6357.879【解题思路】(1)提出零假设,利用公式计算χ2(2)由条件结合全概率公式求PB【解答过程】(1)零假设为H0根据题表中的数据,得χ2所以根据小概率值α=0.05的独立性检验,推断H0即认为该球队参赛的胜与输与甲是否担任主教练有关,此推断犯错误的概率不超过0.05.(2)设事件A1表示“甲在上半场用完换人名额”,事件A2表示“甲在下半场用完换人名额”,事件A3则PA1=0.4,PA2=0.5,PA所以PB=P所以所求概率PA6.(2023·广西柳州·高三阶段练习)携号转网,也称作号携带、移机不改号,即无需改变自己的手机号码,就能转换运营商,并享受其提供的各种服务2019年11月27日,工信部宣布携号转网在全国范围正式启动.某运营商为提质量保客户,从运营系统中运出300名客户,对业务水平和服务水平的评价进行统计,其中业务水平的满意率为1315,服务水平的满意率为2(1)完成下面2×2列联表,并分折是否有99%对服务水平满意人数对服务水平不满意人数合计对业务水平满意人数对业务水平不满意人数合计(2)已知在被调查的对业务水平和服务水平不满意的客户中有6名男性,其中3名是大学生,现在从这6名男性中随机抽取3人,求至少有2名大学生的概率附:K2=nP0.100.050.0250.0100.0050.001k2.7063.8415.0246.6357.87910.828【解题思路】(1)填写列联表,求出卡方,与6.635比较后得到结论;(2)列举法求解古典概型的概率.【解答过程】(1)对服务水平满意人数对服务水平不满意人数合计对业务水平满意人数18080260对业务水平不满意人数202040合计200100300K2没有99%(2)设3名大学生分别为a,b,c,另外3名男性为A,B,C,则从这6名男性中随机抽取3人,共有以下情况:a,b,c,b,c,A,共20种情况,其中至少有2名大学生的情况有:a,b,c,共有10种情况,故从这6名男性中随机抽取3人,至少有2名大学生的概率为10207.(2022·广西梧州·校考一模)第二十二届世界杯足球赛于2022年在卡塔尔举行,中国观众可以通过中央电视台体育频道观看比赛实况.某机构对某社区群众观看足球比赛的情况进行调查,将观看过本次世界杯足球赛至少10场的人称为“足球迷”,否则称为“非足球迷”.从调查结果中随机抽取50份进行分析,得到数据如下表所示:足球迷非足球迷总计男2026女14总计50(1)补全2×2列联表,并判断是否有99%的把握认为是否为“足球迷”与性别有关(2)现从抽取的“足球迷”人群中,按性别采用分层抽样的方法抽取6人,然后从这6人中随机抽取2人,求抽取的2人都为“男足球迷”的概率.附:K2=P0.050.010.001k3.8416.63510.828【解题思路】(1)由2×2列联表,求K2(2)利用分层抽取的6人中,列出从6人中抽取2人的种数和抽取的2人都为男足球迷的种数,即可解答.【解答过程】(1)列联表如下:足球迷非足球迷总计男20626女101424总计302050K2没有99%(2)从抽取的“足球迷”人群中,按性别采用分层抽样的方法抽取6人,这6人中男“足球迷”有4人(设为a,b,c,d),女“足球迷”有2人(设为A,B),从6人中抽取2人有AB,Aa,Ab,Ac,Ad,Ba,Bb,Bc,Bd,ab,ac,ad,bc,bd,cd共15种,记事件M为“抽取的2人都为男足球迷”,则M包含有ab,ac,ad,bc,bd,cd共6种情况,所以PM8.(2023·高二单元测试)从某学校获取了容量为200的有放回简单随机样本,将所得数学和语文期末考试成绩的样本观测数据整理如下:数学成绩语文成绩合计不优秀优秀不优秀8040120优秀404080合计12080200(1)依据α=0.05的独立性检验能否认为数学成绩与语文成绩有关联?(2)从200个样本中任取3个,记这3人中语文数学成绩至少一门优秀的人数为X,求X的分布列与期望.附:α0.10.050.010.0050.001x2.7063.8416.6357.87910.828参考公式:χ2=n【解题思路】(1)计算出χ2(2)确定X的取值可能为0,1,2,3,求出语文数学成绩至少一门优秀的概率P,然后由独立重复试验的概率公式计算概率得分布列,再由期望公式计算期望.【解答过程】(1)根据表格计算可得:χ所以依据α=0.05的独立性检验,即认为数学成绩与语文成绩有关联;(2)语文数学成绩至少一门优秀的概率为P=1−80因为X的取值可能为0,1,2,3,PX=0PX=2所以X的分布列为:X0123P8365427于是,EX9.(2023·四川·校联考一模)为了有针对性地提高学生体育锻炼的积极性,某学校对学生是否经常锻炼的情况进行了调查.从本校学生中随机选取了800名学生进行调查了解,并将调查结果(“经常”或“不经常”)制成下表所示的列联表:性别不经常经常合计女生200300500男生150150300合计350450800(1)通过计算判断,有没有99%的把握认为性别因素与学生锻炼的经常性有关?(2)将频率视作概率.若该学校有4000名学生,估计该校经常锻炼的学生人数.附表及公式:P0.150.100.050.0250.010k2.0722.7063.8415.0246.635其中K2=n【解题思路】(1)计算K2(2)求出样本数据中经常锻炼的学生的频率,将频率视为概率,即可求得该校经常锻炼的学生人数的估计值.【解答过程】(1)由题,有K2因此,有99%的把握认为性别因素与学生锻炼的经常性有关系.(2)由图表可知,样本数据中,经常锻炼的学生人数为450,频率为450800将频率视为概率,则在该校随机抽取一名学生,抽取到经常锻炼的学生的概率为916则该校4000名学生中,经常锻炼的学生人数的估计值为91610.(2023·陕西榆林·统考一模)第二十二届世界杯足球赛在卡塔尔正式拉开序幕,这是历史上首次在北半球冬季举行的世界杯足球赛.某市为了解高中生是否关注世界杯足球赛与性别的关系,随机对该市50名高中生进行了问卷调查,得到如下列联表.关注不关注合计男高中生4女高中生14合计已知在这50名高中生中随机抽取1人,抽到关注世界杯足球赛的高中生的概率为45(1)完成上面的2×2列联表;(2)根据列联表中的数据,判断能否有90%附:χ2=nP0.1000.0500.0100.001k2.7063.8416.63510.828【解题思路】(1)根据已知得出世界杯足球赛的高中生人数,不关注世界杯足球赛的高中生人数,即可完成列联表;(2)根据已知公式得出χ2【解答过程】(1)由题可知,关注世界杯足球赛的高中生有50×4不关注世界杯足球赛的高中生有50−40=10人.故完成的列联表如下:关注不关注合计男高中生26430女高中生14620合计401050(2)χ2因为2.083<2.706,所以没有90%11.(2023春·河南·高三阶段练习)某品牌手机厂商为对比A,B两款手机屏幕的抗跌性,分别对A,B两款各50部手机进行手机跌落测试,屏幕损坏情况如下表:屏幕无损坏屏幕损坏A款4010B款3020(1)判断是否有95%的把握认为手机屏幕的抗跌性与手机款式有关?(2)为方便手机用户,手机厂商针对A,B两款手机推出碎屏险服务,在保修期内,如果手机屏幕意外损坏,手机用户可以享受1次免费更换服务.某人为A,B款各一部手机购买了碎屏险,已知两部手机在保修期内屏幕意外损坏的概率分别为0.05,0.08,手机屏幕意外损坏相互独立.记两部手机在保修期内免费更换屏幕的次数一共为X,求X的分布列和数学期望.参考公式:K2=n参考数据:P0.10.050.010.005k2.7063.8416.6357.879【解题思路】(1)利用列联表中的数据计算K2(2)由X可能的取值计算对应的概率,得到X的分布列,由公式计算数学期望.【解答过程】(1)由列联表可得,K2所以有95%的把握认为手机屏幕的抗跌性与手机款式有关.(2)X可能的取值分别为0,1,2,则PX=0PX=1PX=2所以X的分布列为:X012P0.8740.1220.004EX所以免费更换屏幕的次数X的期望为0.13.12.(2023·全国·模拟预测)某校团委针对“学生性别和喜欢课外阅读”是否有关做了一次不记名调查,其中被调查的全体学生中,女生人数占总人数的13.调查结果显示,男生中有16的人喜欢课外阅读,女生中有(1)以频率视为概率,若从该校全体学生中随机抽取2名男生和2名女生,求其中恰有2人喜欢课外阅读的概率;(2)若有95%的把握认为喜欢课外阅读和性别有关,求被调查的男生至少有多少人?附:P0.0500.010k3.8416.635χ2=n【解题思路】(1)由相互独立事件同时发生的概率,可得结论;(2)设出男生人数,列出2×2列联表,根据χ2≥3.841及【解答过程】(1)从该校全体学生中随机抽取2名男生和2名女生,记其中恰有2人喜欢课外阅读为事件A,则PA(2)设被调查的男生人数为x,则被调查的女生人数为x2,则2×2喜欢课外阅读不喜欢课外阅读合计男生x5xx女生xxx合计xx3x若有95%的把握认为喜欢课外阅读和性别有关,则χ2即χ2≥3x因为x213.(2023春·宁夏银川·高三阶段练习)人类命运共同体的提法将中国梦融入世界梦,充分展现了中国的大国担当.在第75届联合国大会上中国承诺,将采取更加有力的政策和措施,力争于2030年之前使二氧化碳的排放达到峰值,努力争取2060年之前实现碳中和(简称“双碳目标"),此举展现了我国应对气候变化的坚定决心,预示着中国经济结构和经济社会运转方式将产生深刻变革,极大促进我国产业链的清洁化和绿色化.新能源汽车、电动汽车是重要的战略新兴产业,对于实现“双碳目标”具有重要的作用.为了解某一地区电动汽车销售情况,一机构根据统计数据,用最小二乘法得到电动汽车销量y(单位:万台)关于x(年份)的线性回归方程为y=4.7x−9459.2,且销量y的方差为sy2=2545(1)求y与x的相关系数r,并据此判断电动汽车销量y与年份x的相关性强弱;(2)该机构还调查了该地区90位购车车主的性别与购车种类情况,得到的数据如下表:性别购买非电动汽车购买电动汽车总计男性39645女性301545总计692190依据小概率值α=0.05的独立性检验,能否认为购买电动汽车与车主性别有关;①参考数据:5×127=②参考公式:(i)线性回归方程:y=bx+a,其中(ii)相关系数:r=i=1nxi−xy③参考临界值表:P0.100.050.0100.005k2.7063.8416.6357.879【解题思路】(1)利用相关系数r的求解公式,并转化为b和方差之间的关系,代入计算即可;(2)直接利用独立性检验公式求出χ2【解答过程】(1)相关系数为r=i=1nx=4.7×10254=4710(2)零假设为H0即购买电动汽车与车主性别无关.χ2所以依据小概率值α=0.05的独立性检验,我们推断H0即认为购买电动汽车与车主性别有关,此推断犯错误的概率不大于0.05.14.(2023春·河南新乡·高三开学考试)在数字化时代,电子书阅读给人们的阅读方式、认知模式与思维习惯带来了改变,电子书阅读的快速增长也再次引发人们对相关问题的思考.某地对本地群众(中老年人与年轻人)的年龄与阅读习惯(经常电子阅读与经常纸质阅读)进行了调查统计,得到如下列联表:年轻人中老年人合计经常电子阅读503585经常纸质阅读xy115合计MN200设从经常电子阅读的人中任取1人,记抽取的中老年人数为ξ;从经常纸质阅读的人中任取1人,记抽取的中老年人数为η.已知P(ξ=0)=23(1)求列联表中x,y,M,N的值,并判断是否有95%(2)从年轻人中按阅读习惯用分层抽样的方法抽出6人,再从抽出的6人中用简单随机抽样的方法抽取4人,若其中经常电子阅读的人数为X,求P(X=2).参考公式及参考数据:K2=nP0.100.050.0100.005k2.7063.8416.6357.879【解题思路】(1)根据题意,分析表格中的数据求出x、y、M、N的值,结合卡方公式计算和独立性检验的思想即可下结论;(2)利用列举法写出所有的基本事件,结合古典概型的概率计算公式计算即可求解.【解答过程】(1)因为P(ξ=0)=2317P(η=0)解得x=50,y=65,M=100,N=100.因为K2所以有95%(2)由题意可知,抽出的6人中,经常电子阅读的有3人,分别记为A,B,C,经常纸质阅读的有3人,分别记为a,b,c,从中抽取4人,则基本事件有ABCaABab,其中X=2的基本事件有ACab,所以P(X=2)=915.(2023·全国·模拟预测)2020年,教育部启动实施强基计划.强基计划聚焦国家重大战略需求,突出基础学科的支撑引领作用.三年来,强基计划共录取新生1.8万余人.为响应国家号召,某校2022年7月成立了“强基培优”拓展培训班,从高一入校时中考数学成绩前100名的学生中选取了50名对数学学科研究有志向、有兴趣、有天赋的学生进行拓展培训.为了解数学“强基培优”拓展培训的效果,在高二时举办了一次数学竞赛,这100名学生的成绩(满分为150分)情况如下表所示.成绩不低于135分成绩低于135分总计参加过培训401050未参加过培训203050总计6040100(1)能否有99%的把握认为学生的数学竞赛成绩与是否参加“强基培优”拓展培训有关?(2)从成绩不低于135分的这60名学生中,按是否参加过“强基培优”拓展培训采用分层抽样﹐随机抽取了6人,再从这6人中随机抽取2人代表学校参加区里的数学素养大赛,求这2人中至少有一人未参加过培训的概率.参考公式:K2=nP0.100.050.0250.0100.001k2.7063.8415.0246.63510.828【解题思路】(1)根据表中数据和参考公式代入计算并与6.635比较即可得出结论;(2)由分层抽样可知参加过培训的有4人,未参加过的有2人,列举出6人中随机抽取2人的所有基本事件,再选出符合条件的事件数即可求得结果.【解答过程】(1))根据列联表代入计算可得:K2=100×所以有99%的把握认为学生的数学竞赛成绩与是否参加“强基培优”拓展培训有关.(2)由题意可知,所抽取的6名学生中参加过“强基培优”拓展培训的有4人,记为A1,A2,A3未参加过“强基培优”拓展培训的有2人,设为甲、乙.从这6人中随机抽取2人的所有基本事件有A1,A2,A1,A3,A1,A4,A1,甲,A1,乙,A2其中至少有一人未参加过培训的基本事件有A1,甲,A2,甲,A3,甲,A4,故至少有一人未参加过培训的概率P=916.(2023·全国·模拟预测)2022年9月23日,以“庆丰收同心共富,迎盛会齐向未来”为主题的第五个中国农民丰收节开幕式在盐城市射阳县海河镇举行.射阳县政府同步开展以“湿地绿城庆丰收、向海图强迎盛会”为主题的农民丰收节系列活动,现从某活动现场的观众中随机抽取200名(其中男性120名),了解他们对该活动的满意情况,得到下表.不满意满意总计男性75女性50总计200(1)根据统计数据完成2×2列联表,并依据小概率值α=0.001的独立性检验,能否认为性别与对活动的满意度有关?(2)该活动现场还举行了有奖促销活动,凡当天消费每满500元,可抽奖一次.抽奖方案是:从装有3个红球和3个白球(形状、大小、质地完全相同)的抽奖箱里一次性摸出2个球,若摸出2个红球,则可获得80元现金的返现;若摸出1个红球,则可获得40元现金的返现;若没摸出红球,则不能获得任何现金返现.若某观众当天消费1000元,记该观众参加抽奖获得的返现金额为X,求X的分布列和数学期望.附:χ2=nα0.1000.0500.0100.001x2.7063.8416.63510.828【解题思路】(1)写出零假设,补全2×2列联表,计算χ2(2)分别求出一次摸球摸出0,1,2个红球的概率,写出X的所有可能取值及对应取值的概率,写出X的分布列并计算其数学期望【解答过程】(1)设为H0:性别与对活动的满意度无关.由题意,抽取的200名观众中男性有120名,女性有80名,补全的2×2列联表如下:不满意满意总计男性4575120女性503080总计95105200则χ根据小概率值α=0.001的独立性检验,我们推断H0不成立,即认为性别与对活动的满意度有关,此推断犯错误的概率不大于0.001.(2)设一次摸球摸出2个红球的事件为A,摸出1个红球的事件为B,没摸出红球的事件为C,则PA=C32由题意,X可取160,120,80,40,0.PX=160PX=120PX=80PX=40PX=0所以X的分布列为X16012080400P161161E(X)=160×117.(2023·贵州贵阳·统考模拟预测)2022年9月3日至2022年10月8日,因为疫情,贵阳市部分高中学生只能居家学习,为了监测居家学习效果,某校在恢复正常教学后举行了一次考试,在考试中,发现学生总体成绩相较疫情前的成绩有明显下降,为了解学生成绩下降的原因,学校进行了问卷调查,从问卷中随机抽取了200份学生问卷,发现其中有96名学生成绩下降,在这些成绩下降的学生中有54名学生属于“长时间使用手机娱乐”(每天使用手机娱乐2个小时以上)的学生.(1)根据以上信息,完成下面的2×2列联表,并判断能否有99.5%把握认为“成绩下降”与“长时间使用手机娱乐”有关?长时间使用手机娱乐非长时间使用手机娱乐合计成绩下降成绩未下降合计90200(2)在被抽取的200名学生中“长时间使用手机娱乐”且“成绩未下降”的女生有12人,现从“长时间使用手机娱乐”且“成绩未下降”的学生中按性别分层抽样抽取6人,再从这6人中随机抽取3人访该,记被抽取到的3名学生中女生人数为X,求X的分布列和数学期望E(X).参考公式:K2=nP0.150.100.050.0250.0100.0050.001k2.0722.7063.8415.0246.6357.87910.828【解题思路】(1)由题意列出2×2列联表,计算K2(2)女生被抽到得的人数X可取0,1,2,根据古典概型分别计算概率,列出分布列,求出期望.【解答过程】(1)2×2列联表如下:长时间使用手机娱乐非长时间使用手机娱乐合计成绩下降544296成绩未下降3668104合计90110200K2∴有99.5%把握认为“学习成绩下降”与“长时间使用手机娱乐”有关.(2)(2)在抽取的6人中,女生有6×1236=2则这6人中随机抽取3人进一步访谈,女生被抽到得的人数X可取0,1,2,P(X=0)=CP(X=2)=C∴X的分布列为:X012P131∴E(X)=0×118.(2023·山东威海·统考一模)第五届中国国际进口博览会于2022年11月4日在上海开幕,本次进口博览会共有145个国家、地区和国际组织参展,企业商业展延续食品及农产品、汽车、技术装备、消费品、医疗器械及医药保健、服务贸易六大展区设置.进口博览会的举办向世界展示了中国扩大开放的决心与自信、气魄与担当.为调查上海地区大学生对进口博览会展区设置的了解情况,从上海各高校抽取400名学生进行问卷调查,得到部分数据如下表:男女总计了解80不了解160总计200400(1)完成上述2×2列联表,并判断是否有99.9%的把握认为上海地区大学生对进口博览会展区设置的了解情况与性别有关;(2)据调查,上海某高校学生会宣传部6人中有3人了解进口博览会展区设置情况,现从这6人中随机抽取4人参加进口博览会志愿服务,设抽取的人中了解进口博览会展区设置情况的人数为X,求X的分布列与数学期望.参考公式:K2=n参考数据:P0.100.050.010.0050.001k2.7063.8416.6357.87910.828【解题思路】(1)先根据已知完善2×2列联表,再根据表中数据求出K2,从而比较K2与(2)根据已知结合离散型随机分布的分布列与数学期望求法得出答案.【解答过程】(1)根据已知完成2×2列联表如下,男女总计了解8040120不了解120160280总计200200400则K2则19.048>10.828,则有99.9%的把握认为上海地区大学生对进口博览会展区设置的了解情况与性别有关;(2)根据题意,X的可能取值为1,2,3,PX=1PX=2PX=3则X的分布列为:X123P131则EX19.(2023春·浙江·高三开学考试)近年来,各平台短视频、网络直播等以其视听化自我表达、群圈化分享推送、随时随地传播、碎片化时间观看等特点深受人们喜爱,吸引了眼球赚足了流量,与此同时,也存在功能失范、网红乱象、打赏过度、违规营利、恶意营销等问题.为促使短视频、网络直播等文明、健康,有序发展,依据《网络短视频平台管理规范》、《网络短视频内容审核标准细则》等法律法规,某市网信办、税务局、市场监督管理局联合对属地内短视频制作、网络直播进行审查与监管.(1)对短视频、网络直播的整体审查包括总体规范、账户管理、内容管理等三个环节,三个环节均通过审查才能通过整体审查.设某短视频制作团队在这三个环节是否通过审查互不影响,且各环节不能通过审查的概率分别为425①求该团不能通过整体审查的概率:②设该团队通过整体审查后,还要进入技术技能检测环节,若已知该团队最终通过整体审查和技术技能检测的概率为35%,求该团队在已经通过整体审查的条件下通过技术技能检测的概率;(2)某团队为提高观众点击其视频的流量,通过观众对其视频的评论分析来优化自己的创作质量,现有100条评论数据如下表:对视频作品否满意时间合计改拍前视频改拍后视频满意285785不满意12315合计4060100试问是否有99.9%的把握可以认为观众对该视频的满意度与该视频改拍相关程度有关联?参考公式:χ2=P0.10.050.010.0050.001x2.7063.8416.6357.87910.828【解题思路】(1)利用对立事件性质与条件概率公式即可求解;(2)代入公式即可求出值,再与表格数据对比即可求解.【解答过程】(1)①由题意该团队不能通过审查的概率为:1−1−②假设该团队通过审查的事件为A.通过技术技能检测的事件为B,则由题意,P(A)=49100,P(AB)=35(2)根据题意得χ2所以有99.9%的把握可以认为观众对该视频的满意度与该视频改拍相关程度有关联.20.(2023·陕西铜川·校考一模)某调研机构为研究某产品是否受到人们的欢迎,在社会上进行了大量的问卷调查,从中抽取了50份试卷,得到如下结果:

性别是否喜欢男生女生是158否1017(1)估算一下,1000人当中有多少人喜欢该产品?(2)能否有95%(3)从表格中男生中利用分层抽样方法抽取5人,进行面对面交谈,从中选出两位参与者进行彩产品的试用,求所选的两位参与者至少有一人不喜欢该产品的概率.参考公式与数据:P0.100.0500.0100.005k2.7063.8416.6357.879K2=n【解题思路】(1)通过表格得到喜欢产品的概率,即可求解;(2)根据列联表结合公式运算K2(3)根据分层抽样得到共有3人喜欢,有2人不喜欢,然后写出选择两个人的所有情况,在罗列出满足至少有一人不喜欢的情况,根据古典概型即可【解答过程】(1)通过表格可得到喜欢该产品的概率为2350故1000人中喜欢该产品的人大概有1000×(2)由表格可得K2故有95%(3)由于15:10=3:2,故抽取的5人中有3个人a1,a从中选2人,则所有选择方法为:a1其中至少有一个人不喜欢的可能情形为:a3故所选的两位参与者至少有一人不喜欢该产品的概率P=721.(2023·贵州毕节·统考一模)2022年11月21日到12月18日,第二十二届世界杯足球赛在卡塔尔举行,某机构将关注这件赛事中40场比赛以上的人称为“足球爱好者”,否则称为“非足球爱好者”,该机构通过调查,并从参与调查的人群中随机抽取了100人进行分析,得到下表(单位:人):足球爱好者非足球爱好者合计女2050男15合计100(1)将上表中的数据填写完整,并判断能否在犯错误的概率不超过0.005的前提下认为足球爱好与性别有关?(2)现从抽取的女性人群中,按“足球爱好者”和“非足球爱好者”这两种类型进行分层抽样抽取5人,然后再从这5人中随机选出3人,求其中至少有1人是“足球爱好者”的概率.附:K2=nP0.100.050.0250.0100.0050.001k2.7063.8415.0246.6357.87910.828【解题思路】(1)根据所给数据补全表格,根据公式计算K2(2)将选中的5人编号,用枚举法列出所有的可能,即可求出概率.【解答过程】(1)足球爱好者非足球爱好者合计女203050男351550合计5545100∵K∴能在犯错误的概率不超过0.005的前提下认为足球爱好与性别有关.(2)依题意,从女性人群中抽取的5人中,是“足球爱好者”的有2人,设为A1,A2;“非足球爱好者”的有3人,设为B1,B随机选出3人的情况有:A1A2B1,A1A2B2,A1A2B3其中至少有1人是“足球爱好者”的情况有:A1A2B1,A1A2B2,A1A2则选出的3人中至少有1人是“足球爱好者”的概率为:P=922.(2023秋·江苏无锡·高三期末)体育比赛既是运动员展示个人实力的舞台,也是教练团队排兵布阵的战场.在某团体比赛项目中,教练组想研究主力队员甲、乙对运动队得奖牌的贡献,根据以往的比赛数据得到如下统计:运动队赢得奖牌运动队未得奖牌总计甲参加40b70甲未参加c40f总计50en(1)根据小概率值α=0.001的独立性检验,能否认为该运动队赢得奖牌与甲参赛有关联?(2)根据以往比赛的数据统计,乙队员安排在1号,2号,3号三个位置出场比赛,且出场率分别为0.3,0.5,0.2,同时运动队赢得奖牌的概率依次为:0.6,0.7,0.5.则①当乙队员参加比赛时,求该运动队比赛赢得奖牌的概率;②当乙队员参加比赛时,在运动队赢得比赛奖牌的条件下,求乙在2号位置出场的概率.附表及公式:α0.150.100.050.0250.0100.0050.001x2.0722.7063.8415.0246.6357.87910.828χ【解题思路】(1)根据数据的分析完成列联表,利用卡方公式和独立性检验的思想即可下结论;(2)根据独立事件的概率公式和条件概率的求法即可求解.【解答过程】(1)由题意知,b=70−40=30,c=50−40=10,e=30+40=70,f=10+40=50,n=70+50=120,2×2列联表如下:运动队赢得奖牌运动队未得奖牌总计甲参加403070甲未参加104050总计5070120χ2∴可以认为该运动队赢得奖牌与甲参赛有关联.(2)①乙队员参加比赛时,赢得奖牌的概率P=0.3×0.6+0.5×0.7+0.2×0.5=0.63.②记事件A为“乙运动员赢得比赛奖牌”,事件B为“乙在2号位置出场”,∴PB23.(2023·高二单元测试)某学校为研究高三学生的身体素质与体育锻炼时间的关系,对该校400名高三学生(其中女生220名)平均每天体育锻炼时间进行调查,得到下表:平均每天锻炼时间(分钟)0,1010,2020,3030,4040,5050,60人数4072881008020将日平均体育锻炼时间在40分钟以上的学生称为“锻炼达标生”,调查知女生有40人为“锻炼达标生”.(1)完成下面2×2列联表,试问:能否有99.9%以上的把握认为“锻炼达标生”与性别有关?锻炼达标生锻炼不达标合计男女合计400附:K2=nP0.1000.0500.0100.001K2.7063.8416.63510.828(2)在“锻炼达标生”中用分层抽样方法抽取10人进行体育锻炼体会交流,再从这10人中选2人作重点发言,记这2人中女生的人数为X,求X的分布列和数学期望.【解题思路】(1)计算出K2(2)列出随即变量X的分布列,利用期望的公式计算可得.【解答过程】(1)补充完整的2×2列联表如下:锻炼达标生锻炼不达标合计男60120180女40180220合计100300400∵K2∴有99.9%以上的把认为“锻炼达标生”与有关.(2)“锻炼达标生”中男女人数之比为60:40=3:2,抽取的男生有6,女生有4人,易知X=0,1,2,PX=0=C01X的分布列为:X012P182EX24.(2023·高二单元测试)某中学在该校高一年级开设了选修课《中国数学史》,经过一年的学习,为了解同学们在数学史课程的学习后学习数学的兴趣是否浓厚,该校随机抽取了200名高一学生进行调查,得到统计数据如下:对数学兴趣浓厚对数学兴趣薄弱合计选学了《中国数学史》10020120未选学《中国数学史》xyn合计160m200(1)求2×2列联表中的数据x,y,(2)在选学了《中国数学史》的120人中按对数学是否兴趣浓厚,采用分层随机抽样的方法抽取12人,再从12人中随机抽取3人做进一步调查.若初始总分为10分,抽到的3人中,每有一人对数学兴趣薄弱减1分,每有一人对数学兴趣浓厚加2分.设得分结果总和为X,求X的分布列和数学期望.附:KP(0.1500.1000.0500.0250.010k2.0722.7063.8415.0246.635【解题思路】(1)根据列联表,直接填写表格,再根据参考公式求K2(2)首先确定X=10,13,16,再利用超几何分布求概率.【解答过程】(1)由题意得:x=60,y=20,m=40,n=80.则K2所以,有85%(2)在选学了数学史的120人中按对数学是否兴趣浓厚,采用分层随机抽样的方法抽取12人,可知其中对数学兴趣浓厚有10人,对数学兴趣薄弱有2人,再从12人中抽取3人,当这3人中恰有2人对数学兴趣薄弱时,X=10;当这3人中恰有1人对数学兴趣薄弱时,X=13;当这3人都对数学兴趣浓厚时,X=16;故:PX=10=C22所以X的分布列为:X101316P196X的数学期望为:EX25.(2023·高二单元测试)2023年元旦,某鞋店搞促销,进行降价销售,在该天累计到店的人员有100人.经评估后将到店人员分为购买组和观察组,统计到店人员的分布如下表:60岁以下60岁及以上总计购买组的人数201030观察组的人数601070总计8020100(1)是否有95%(2)现从购买组的人中按分层抽样的方法(各层按比例分配)抽取6人,再从这6人中随机抽取2人,求这2人全部为60岁以下的概率.参考公式:K2=nP0.150.100.050.0250.0100.001k2.0722.7063.8415.0246.63510.828【解题思路】(1)根据列联表结合公式运算K2(2)利用分层抽样和列举法求得基本事件数,利用古典概型公式计算所求的概率值.【解答过程】(1)根据公式,得K2故有95%(2)现从购买组的人中按分层抽样方法(各层按比例分配)抽取6人,其中60岁以下的人数为6×2030=4,分别设为a,b,c,d;60岁及以上的人数为6×1030从这6人中迶机抽取2人的所有可能的结果为a,b,a,c,a,d,a,A,a,B,b,c,b,d,b,A,b,B,c,d,c,A,c,B,d,A,d,B,A,B,共15种,其中2人全部为60岁以下的结果有a,b,a,c,a,d,b,c,b,d,c,d,共6种,所以这2人全部为60岁以下的概率为P=626.(2023春·河南濮阳·高三开学考试)某出租车公司为推动驾驶员服务意识和服务水平大提升,对出租车驾驶员从驾驶技术和服务水平两个方面进行了考核,并从中随机抽取了100名驾驶员,这100名驾驶员的驾驶技术与性别的2×2列联表和服务水平评分的频率分布直方图如下,已知所有驾驶员的服务水平评分均在区间76,100内.驾驶技术优秀非优秀男2545女525(1)判断能否有95%的把握认为驾驶员的驾驶技术是否优秀与性别有关;(2)从服务水平评分在92,96,96,100内的驾驶员中用分层抽样的方法抽取5人,再从这5人中随机抽取3人,求这3人中恰有2人的评分在92,96内的概率.附:K2=nP0.100.0500.010k2.7063.8416.635【解题思路】(1)计算出卡方,与3.841比较后得到相应结论;(2)先根据频率之和为1得到a=0.040,从而得到评分在92,96,96,100内的驾驶员人数比例,及两个区间各抽取的人数,利用列举法求出概率.【解答过程】(1)K2没有95%的把握认为驾驶员的驾驶技术是否优秀与性别有关;(2)0.010×4×2+0.055×4+0.065×4+0.070×4+4a=1,解得:a=0.040,故服务水平评分在92,96,96,100内的驾驶员人数比例为0.040:0.010=4:1,故用分层抽样的方法抽取5人中,92,96内有4人,设为a,b,c,d,96,100内有1人,设为A,再从这5人中随机抽取3人,共有以下情况:a,b,c,其中这3人中恰有2人的评分在92,96的有a,b,A,故这3人中恰有2人的评分在92,96内的概率为61027.(2023春·黑龙江哈尔滨·高三开学考试)我市为了解学生体育运动的时间长度是否与性别因素有关,从某几所学校中随机调查了男、女生各100名的平均每天体育运动时间,得到如下数据:分钟性别0,4040,6060,9090,120女生10404010男生5254030根据学生课余体育运动要求,平均每天体育运动时间在60,120内认定为“合格”,否则被认定为“不合格”,其中,平均每天体育运动时间在90,120内认定为“良好”.(1)完成下列2×2列联表,并依据小概率值α=0.005的独立性检验,分析学生体育运动时间与性别因素有无关联;不合格合格合计女生男生合计(2)从女生平均每天体育运动时间在0,40,40,60,60,90,90,120的100人中用分层抽样的方法抽取20人,再从这20人中随机抽取2人,记X为2人中平均每天体育运动时间为“良好”的人数,求X的分布列及数学期望;(3)从全市学生中随机抽取100人,其中平均每天体育运动时间为“良好”的人数设为ξ,记“平均每天体育运动时间为‘良好’的人数为k”的概率为Pξ=k,视频率为概率,用样本估计总体,求P附:χ2=nα0.0100.0050.001x6.6357.87910.828【解题思路】(1)由题意完成2×2列联表,根据列联表中的数据,计算χ2(2)抽取的20人中,女生平均每天运动时间在(0,40],(40,60]、(60,90],(90,120]的人数分别为2人、8人、8人、2人,由题意知X的所有可能取值为0,1,2,分别求出相应的概率,由此能求出X的分布列及数学期望;(3)平均每天运动时间在(90,120]的频率为0.2,由题意可知ξ~B(100,0.2),由此能求出P(ξ=k)的表达式.【解答过程】(1)由题意可知,2×2列联表如下表不合格合格合计女生5050100男生3070100合计80120200零假设为H0根据列联表中的数据,经计算得到χ2根据小概率值α=0.005的独立性检验,我们推断H0(2)抽取的20人中,女生平均每天运动时间在0,40,40,60,60,90,90,120的人数分别为2人,8人,8人,2人,X的所有可能取值为0,1,2,P(X=0)=C182C2所以X的分布列为X012P153181所以数学期望为E(X)=0×1

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论