辽宁省灯塔市市级名校2024届中考数学全真模拟试卷含解析_第1页
辽宁省灯塔市市级名校2024届中考数学全真模拟试卷含解析_第2页
辽宁省灯塔市市级名校2024届中考数学全真模拟试卷含解析_第3页
辽宁省灯塔市市级名校2024届中考数学全真模拟试卷含解析_第4页
辽宁省灯塔市市级名校2024届中考数学全真模拟试卷含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

辽宁省灯塔市市级名校2024届中考数学全真模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.甲、乙两人加工一批零件,甲完成240个零件与乙完成200个零件所用的时间相同,已知甲比乙每天多完成8个零件.设乙每天完成x个零件,依题意下面所列方程正确的是()A. B.C. D.2.在平面直角坐标系中,将点P(﹣4,2)绕原点O顺时针旋转90°,则其对应点Q的坐标为()A.(2,4) B.(2,﹣4) C.(﹣2,4) D.(﹣2,﹣4)3.下列博物院的标识中不是轴对称图形的是()A. B.C. D.4.如图,四边形ABCD是边长为1的正方形,动点E、F分别从点C,D出发,以相同速度分别沿CB,DC运动(点E到达C时,两点同时停止运动).连接AE,BF交于点P,过点P分别作PM∥CD,PN∥BC,则线段MN的长度的最小值为()A. B. C. D.15.据调查,某班20为女同学所穿鞋子的尺码如表所示,尺码(码)3435363738人数251021则鞋子尺码的众数和中位数分别是()A.35码,35码 B.35码,36码 C.36码,35码 D.36码,36码6.已知在一个不透明的口袋中有4个形状、大小、材质完全相同的球,其中1个红色球,3个黄色球.从口袋中随机取出一个球(不放回),接着再取出一个球,则取出的两个都是黄色球的概率为()A.34 B.23 C.97.据统计,某住宅楼30户居民五月份最后一周每天实行垃圾分类的户数依次是:27,30,29,25,26,28,29,那么这组数据的中位数和众数分别是()A.25和30 B.25和29 C.28和30 D.28和298.如图,菱形ABCD中,E.F分别是AB、AC的中点,若EF=3,则菱形ABCD的周长是()A.12 B.16 C.20 D.249.某班组织了针对全班同学关于“你最喜欢的一项体育活动”的问卷调查后,绘制出频数分布直方图,由图可知,下列结论正确的是()A.最喜欢篮球的人数最多 B.最喜欢羽毛球的人数是最喜欢乒乓球人数的两倍C.全班共有50名学生 D.最喜欢田径的人数占总人数的10%10.若一元二次方程x2﹣2x+m=0有两个不相同的实数根,则实数m的取值范围是()A.m≥1 B.m≤1 C.m>1 D.m<1二、填空题(共7小题,每小题3分,满分21分)11.如图,在ABC中,AB=AC=6,∠BAC=90°,点D、E为BC边上的两点,分别沿AD、AE折叠,B、C两点重合于点F,若DE=5,则AD的长为_____.12.化简;÷(﹣1)=______.13.(2016辽宁省沈阳市)如图,在Rt△ABC中,∠A=90°,AB=AC,BC=20,DE是△ABC的中位线,点M是边BC上一点,BM=3,点N是线段MC上的一个动点,连接DN,ME,DN与ME相交于点O.若△OMN是直角三角形,则DO的长是______.14.如图所示,在菱形ABCD中,AB=4,∠BAD=120°,△AEF为正三角形,点E、F分别在菱形的边BC、CD上滑动,且E、F不与B、C、D重合.当点E、F在BC、CD上滑动时,则△CEF的面积最大值是____.15.对于函数y=,当函数y﹤-3时,自变量x的取值范围是____________.16.分式方程x2x-1=1-217.如图,在△ABC中,AB=5cm,AC=3cm,BC的垂直平分线分别交AB、BC于D、E,则△ACD的周长为cm.三、解答题(共7小题,满分69分)18.(10分)如图,AD是⊙O的直径,AB为⊙O的弦,OP⊥AD,OP与AB的延长线交于点P,过B点的切线交OP于点C.求证:∠CBP=∠ADB.若OA=2,AB=1,求线段BP的长.19.(5分)如图,中,于,点分别是的中点.(1)求证:四边形是菱形(2)如果,求四边形的面积20.(8分)已知关于x的一元二次方程x2﹣2(k﹣1)x+k(k+2)=0有两个不相等的实数根.求k的取值范围;写出一个满足条件的k的值,并求此时方程的根.21.(10分)现有一次函数y=mx+n和二次函数y=mx2+nx+1,其中m≠0,若二次函数y=mx2+nx+1经过点(2,0),(3,1),试分别求出两个函数的解析式.若一次函数y=mx+n经过点(2,0),且图象经过第一、三象限.二次函数y=mx2+nx+1经过点(a,y1)和(a+1,y2),且y1>y2,请求出a的取值范围.若二次函数y=mx2+nx+1的顶点坐标为A(h,k)(h≠0),同时二次函数y=x2+x+1也经过A点,已知﹣1<h<1,请求出m的取值范围.22.(10分)在Rt△ABC中,∠C=90°,∠B=30°,AB=10,点D是射线CB上的一个动点,△ADE是等边三角形,点F是AB的中点,连接EF.(1)如图,点D在线段CB上时,①求证:△AEF≌△ADC;②连接BE,设线段CD=x,BE=y,求y2﹣x2的值;(2)当∠DAB=15°时,求△ADE的面积.23.(12分)计算:sin30°﹣+(π﹣4)0+|﹣|.24.(14分)先化简,再求值:,其中x是满足不等式﹣(x﹣1)≥的非负整数解.

参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、B【解题分析】

根据题意设出未知数,根据甲所用的时间=乙所用的时间,用时间列出分式方程即可.【题目详解】设乙每天完成x个零件,则甲每天完成(x+8)个.即得,,故选B.【题目点拨】找出甲所用的时间=乙所用的时间这个关系式是本题解题的关键.2、A【解题分析】

首先求出∠MPO=∠QON,利用AAS证明△PMO≌△ONQ,即可得到PM=ON,OM=QN,进而求出Q点坐标.【题目详解】作图如下,∵∠MPO+∠POM=90°,∠QON+∠POM=90°,∴∠MPO=∠QON,在△PMO和△ONQ中,∵,∴△PMO≌△ONQ,∴PM=ON,OM=QN,∵P点坐标为(﹣4,2),∴Q点坐标为(2,4),故选A.【题目点拨】此题主要考查了旋转的性质,以及全等三角形的判定和性质,关键是掌握旋转后对应线段相等.3、A【解题分析】

如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,对题中选项进行分析即可.【题目详解】A、不是轴对称图形,符合题意;B、是轴对称图形,不合题意;C、是轴对称图形,不合题意;D、是轴对称图形,不合题意;故选:A.【题目点拨】此题考查轴对称图形的概念,解题的关键在于利用轴对称图形的概念判断选项正误4、B【解题分析】分析:由于点P在运动中保持∠APD=90°,所以点P的路径是一段以AD为直径的弧,设AD的中点为Q,连接QC交弧于点P,此时CP的长度最小,再由勾股定理可得QC的长,再求CP即可.详解:由于点P在运动中保持∠APD=90°,∴点P的路径是一段以AD为直径的弧,设AD的中点为Q,连接QC交弧于点P,此时CP的长度最小,在Rt△QDC中,QC=,∴CP=QC-QP=,故选B.点睛:本题主要考查的是圆的相关知识和勾股定理,属于中等难度的题型.解决这个问题的关键是根据圆的知识得出点P的运动轨迹.5、D【解题分析】

众数是一组数据中出现次数最多的数据,注意众数可以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.【题目详解】数据36出现了10次,次数最多,所以众数为36,一共有20个数据,位置处于中间的数是:36,36,所以中位数是(36+36)÷2=36.故选D.【题目点拨】考查中位数与众数,掌握众数是一组数据中出现次数最多的数据,注意众数可以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数是解题的关键.6、D【解题分析】试题分析:列举出所有情况,看取出的两个都是黄色球的情况数占总情况数的多少即可.试题解析:画树状图如下:共有12种情况,取出2个都是黄色的情况数有6种,所以概率为12故选D.考点:列表法与树状法.7、D【解题分析】【分析】根据中位数和众数的定义进行求解即可得答案.【题目详解】对这组数据重新排列顺序得,25,26,27,28,29,29,30,处于最中间是数是28,∴这组数据的中位数是28,在这组数据中,29出现的次数最多,∴这组数据的众数是29,故选D.【题目点拨】本题考查了中位数和众数的概念,熟练掌握众数和中位数的概念是解题的关键.一组数据中出现次数最多的数据叫做众数,一组数据按从小到大(或从大到小)排序后,位于最中间的数(或中间两数的平均数)是这组数据的中位数.8、D【解题分析】

根据三角形的中位线平行于第三边并且等于第三边的一半求出,再根据菱形的周长公式列式计算即可得解.【题目详解】、分别是、的中点,是的中位线,,菱形的周长.故选:.【题目点拨】本题主要考查了菱形的四边形都相等,三角形的中位线平行于第三边并且等于第三边的一半,求出菱形的边长是解题的关键.9、C【解题分析】【分析】观察直方图,根据直方图中提供的数据逐项进行分析即可得.【题目详解】观察直方图,由图可知:A.最喜欢足球的人数最多,故A选项错误;B.最喜欢羽毛球的人数是最喜欢田径人数的两倍,故B选项错误;C.全班共有12+20+8+4+6=50名学生,故C选项正确;D.最喜欢田径的人数占总人数的=8%,故D选项错误,故选C.【题目点拨】本题考查了频数分布直方图,从直方图中得到必要的信息进行解题是关键.10、D【解题分析】分析:根据方程的系数结合根的判别式△>0,即可得出关于m的一元一次不等式,解之即可得出实数m的取值范围.详解:∵方程有两个不相同的实数根,∴解得:m<1.故选D.点睛:本题考查了根的判别式,牢记“当△>0时,方程有两个不相等的实数根”是解题的关键.二、填空题(共7小题,每小题3分,满分21分)11、或【解题分析】

过点A作AG⊥BC,垂足为G,根据等腰直角三角形的性质可得AG=BG=CG=6,设BD=x,则DF=BD=x,EF=7-x,然后利用勾股定理可得到关于x的方程,从而求得DG的长,继而可求得AD的长.【题目详解】如图所示,过点A作AG⊥BC,垂足为G,∵AB=AC=6,∠BAC=90°,∴BC==12,∵AB=AC,AG⊥BC,∴AG=BG=CG=6,设BD=x,则EC=12-DE-BD=12-5-x=7-x,由翻折的性质可知:∠DFA=∠B=∠C=∠AFE=45°,DB=DF,EF=FC,∴DF=x,EF=7-x,在Rt△DEF中,DE2=DF2+EF2,即25=x2+(7-x)2,解得:x=3或x=4,当BD=3时,DG=3,AD=,当BD=4时,DG=2,AD=,∴AD的长为或,故答案为:或.【题目点拨】本题考查了翻折的性质、勾股定理的应用、等腰直角三角形的性质,正确添加辅助线,灵活运用勾股定理是解题的关键.12、-【解题分析】

直接利用分式的混合运算法则即可得出.【题目详解】原式,,,.故答案为.【题目点拨】此题主要考查了分式的化简,正确掌握运算法则是解题关键.13、或.【解题分析】由图可知,在△OMN中,∠OMN的度数是一个定值,且∠OMN不为直角.故当∠ONM=90°或∠MON=90°时,△OMN是直角三角形.因此,本题需要按以下两种情况分别求解.(1)当∠ONM=90°时,则DN⊥BC.过点E作EF⊥BC,垂足为F.(如图)∵在Rt△ABC中,∠A=90°,AB=AC,∴∠C=45°,∵BC=20,∴在Rt△ABC中,,∵DE是△ABC的中位线,∴,∴在Rt△CFE中,,.∵BM=3,BC=20,FC=5,∴MF=BC-BM-FC=20-3-5=12.∵EF=5,MF=12,∴在Rt△MFE中,,∵DE是△ABC的中位线,BC=20,∴,DE∥BC,∴∠DEM=∠EMF,即∠DEO=∠EMF,∴,∴在Rt△ODE中,.(2)当∠MON=90°时,则DN⊥ME.过点E作EF⊥BC,垂足为F.(如图)∵EF=5,MF=12,∴在Rt△MFE中,,∴在Rt△MFE中,,∵∠DEO=∠EMF,∴,∵DE=10,∴在Rt△DOE中,.综上所述,DO的长是或.故本题应填写:或.点睛:在解决本题的过程中,难点在于对直角三角形中直角的分类讨论;关键点是通过等角代换将一个在原直角三角形中不易求得的三角函数值转换到一个容易求解的直角三角形中进行求解.另外,本题也可以用相似三角形的方法进行求解,不过利用锐角三角函数相对简便.14、【解题分析】解:如图,连接AC,∵四边形ABCD为菱形,∠BAD=120°,∠1+∠EAC=60°,∠3+∠EAC=60°,∴∠1=∠3,∵∠BAD=120°,∴∠ABC=60°,∴△ABC和△ACD为等边三角形,∴∠4=60°,AC=AB.在△ABE和△ACF中,∵∠1=∠3,AC=AC,∠ABC=∠4,∴△ABE≌△ACF(ASA),∴S△ABE=S△ACF,∴S四边形AECF=S△AEC+S△ACF=S△AEC+S△ABE=S△ABC,是定值,作AH⊥BC于H点,则BH=2,∴S四边形AECF=S△ABC=BC•AH=BC•=,由“垂线段最短”可知:当正三角形AEF的边AE与BC垂直时,边AE最短,∴△AEF的面积会随着AE的变化而变化,且当AE最短时,正三角形AEF的面积会最小,又∵S△CEF=S四边形AECF﹣S△AEF,则此时△CEF的面积就会最大,∴S△CEF=S四边形AECF﹣S△AEF=﹣××=.故答案为:.点睛:本题主要考查了菱形的性质、全等三角形判定与性质及三角形面积的计算,根据△ABE≌△ACF,得出四边形AECF的面积是定值是解题的关键.15、-<x<0【解题分析】

根据反比例函数的性质:y随x的增大而减小去解答.【题目详解】解:函数y=中,y随x的增大而减小,当函数y﹤-3时又函数y=中,故答案为:-<x<0.【题目点拨】此题重点考察学生对反比例函数性质的理解,熟练掌握反比例函数性质是解题的关键.16、x=﹣1.【解题分析】试题分析:分式方程变形后,去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.试题解析:去分母得:x=2x﹣1+2,解得:x=﹣1,经检验x=﹣1是分式方程的解.考点:解分式方程.17、8【解题分析】试题分析:根据线段垂直平分线的性质得,BD=CD,则AB=AD+CD,所以,△ACD的周长=AD+CD+AC=AB+AC,解答出即可解:∵DE是BC的垂直平分线,∴BD=CD,∴AB=AD+BD=AD+CD,∴△ACD的周长=AD+CD+AC=AB+AC=8cm;故答案为8考点:线段垂直平分线的性质点评:本题主要考查了线段垂直平分线的性质和三角形的周长,掌握线段的垂直平分线上的点到线段两端点的距离相等三、解答题(共7小题,满分69分)18、(1)证明见解析;(2)BP=1.【解题分析】分析:(1)连接OB,如图,根据圆周角定理得到∠ABD=90°,再根据切线的性质得到∠OBC=90°,然后利用等量代换进行证明;(2)证明△AOP∽△ABD,然后利用相似比求BP的长.详(1)证明:连接OB,如图,∵AD是⊙O的直径,∴∠ABD=90°,∴∠A+∠ADB=90°,∵BC为切线,∴OB⊥BC,∴∠OBC=90°,∴∠OBA+∠CBP=90°,而OA=OB,∴∠A=∠OBA,∴∠CBP=∠ADB;(2)解:∵OP⊥AD,∴∠POA=90°,∴∠P+∠A=90°,∴∠P=∠D,∴△AOP∽△ABD,∴,即,∴BP=1.点睛:本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了圆周角定理和相似三角形的判定与性质.19、(1)证明见解析;(2).【解题分析】

(1)先根据直角三角形斜边上中线的性质,得出DE=AB=AE,DF=AC=AF,再根据AB=AC,点E、F分别是AB、AC的中点,即可得到AE=AF=DE=DF,进而判定四边形AEDF是菱形;

(2)根据等边三角形的性质得出EF=5,AD=5,进而得到菱形AEDF的面积S.【题目详解】解:(1)∵AD⊥BC,点E、F分别是AB、AC的中点,

∴Rt△ABD中,DE=AB=AE,

Rt△ACD中,DF=AC=AF,

又∵AB=AC,点E、F分别是AB、AC的中点,

∴AE=AF,

∴AE=AF=DE=DF,

∴四边形AEDF是菱形;

(2)如图,

∵AB=AC=BC=10,

∴EF=5,AD=5,

∴菱形AEDF的面积S=EF•AD=×5×5=.【题目点拨】本题考查菱形的判定与性质的运用,解题时注意:四条边相等的四边形是菱形;菱形的面积等于对角线长乘积的一半.20、方程的根【解题分析】

(1)根据方程的系数结合根的判别式,即可得出关于k的一元一次不等式,解之即可得出k的取值范围;(1)取k=0,再利用分解因式法解一元二次方程,即可求出方程的根.【题目详解】(1)∵关于x的一元二次方程x1﹣1(k﹣a)x+k(k+1)=0有两个不相等的实数根,∴△=[﹣1(k﹣1)]1﹣4k(k﹣1)=﹣16k+4>0,解得:k<.(1)当k=0时,原方程为x1+1x=x(x+1)=0,解得:x1=0,x1=﹣1.∴当k=0时,方程的根为0和﹣1.【题目点拨】本题考查了根的判别式以及因式分解法解一元二次方程,解题的关键是:(1)牢记“当△>0时,方程有两个不相等的实数根”;(1)取k=0,再利用分解因式法解方程.21、(1)y=x﹣2,y=x2++1;(2)a<;(3)m<﹣2或m>1.【解题分析】

(1)直接将点代入函数解析式,用待定系数法即可求解函数解析式;(2)点(2,1)代入一次函数解析式,得到n=−2m,利用m与n的关系能求出二次函数对称轴x=1,由一次函数经过一、三象限可得m>1,确定二次函数开口向上,此时当y1>y2,只需让a到对称轴的距离比a+1到对称轴的距离大即可求a的范围.(3)将A(h,k)分别代入两个二次函数解析式,再结合对称抽得h=,将得到的三个关系联立即可得到,再由题中已知−1<h<1,利用h的范围求出m的范围.【题目详解】(1)将点(2,1),(3,1),代入一次函数y=mx+n中,,解得,∴一次函数的解析式是y=x﹣2,再将点(2,1),(3,1),代入二次函数y=mx2+nx+1,,解得,∴二次函数的解析式是.(2)∵一次函数y=mx+n经过点(2,1),∴n=﹣2m,∵二次函数y=mx2+nx+1的对称轴是x=,∴对称轴为x=1,又∵一次函数y=mx+n图象经过第一、三象限,∴m>1,∵y1>y2,∴1﹣a>1+a﹣1,∴a<.(3)∵y=mx2+nx+1的顶点坐标为A(h,k),∴k=mh2+nh+1,且h=,又∵二次函数y=x2+x+1也经过A点,∴k=h2+h+1,∴mh2+nh+1=h2+h+1,∴,又∵﹣1<h<1,∴m<﹣2或m>1.【题目点拨】本题考点:点与函数的关系;二次函数的对称轴与函数值关系;待定系数法求函数解析式;不等式的解法;数形结合思想是解决二次函数问题的有效方法.22、(1)①证明见解析;②25;(2)为或50+1.【解题分析】

(1)①在直角三角形ABC中,由30°所对的直角边等于斜边的一半求出AC的长,再由F为AB中点,得

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论