




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
排列组合及二项式定理【基本知识点】1.分类计数和分步计数原理的概念2.排列的概念:从个不同元素中,任取()个元素(这里的被取元素各不相同)按照一定的顺序排成一列,叫做从个不同元素中取出个元素的一个排列3.排列数的定义:从个不同元素中,任取()个元素的所有排列的个数叫做从个元素中取出元素的排列数,用符号表示4.排列数公式:()5.阶乘:表示正整数1到的连乘积,叫做的阶乘规定.6.排列数的另一个计算公式:=7.组合概念:从个不同元素中取出个元素并成一组,叫做从个不同元素中取出个元素的一个组合8.组合数的概念:从个不同元素中取出个元素的所有组合的个数,叫做从个不同元素中取出个元素的组合数.用符号表示.9.组合数公式:或10.组合数的性质1:.规定:;11.组合数的性质2:=+Cn0+Cn1+…+Cnn=2n12.二项式展开公式:(a+b)n=Cn0an+Cn1an-1b+…+Cnkan-kbk+…+Cnnbn13.二项式系数的性质:展开式的二项式系数是,,,…,.可以看成以为自变量的函数,定义域是,(1)对称性.与首末两端“等距离”的两个二项式系数相等(∵).(2)增减性与最大值:当是偶数时,中间一项取得最大值;当是奇数时,中间两项,取得最大值.(3)各二项式系数和:∵,令,则【常见考点】一、可重复的排列求幂法:重复排列问题要区分两类元素:一类可以重复,另一类不能重复,把不能重复的元素看作“客”,能重复的元素看作“店”,则通过“住店法”可顺利解题,在这类问题使用住店处理的策略中,关键是在正确判断哪个底数,哪个是指数(1)有4名学生报名参加数学、物理、化学竞赛,每人限报一科,有多少种不同的报名方法?(2)有4名学生参加争夺数学、物理、化学竞赛冠军,有多少种不同的结果?(3)将3封不同的信投入4个不同的邮筒,则有多少种不同投法?【解析】:(1)(2)(3)二.相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列.高☆考♂资♀源€网☆(4)五人并排站成一排,如果必须相邻且在的右边,那么不同的排法种数有【解析】:把视为一人,且固定在的右边,则本题相当于4人的全排列,种(5)3位男生和3位女生共6位同学站成一排,若男生甲不站两端,3位女生中有且只有两位女生相邻,则不同排法的种数是()A.360B.188C.216D.96【解析】:间接法6位同学站成一排,3位女生中有且只有两位女生相邻的排法有,种高☆考♂资♀源€网☆其中男生甲站两端的有,符合条件的排法故共有288三.相离问题插空法:元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两端.(6)七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是【解析】:除甲乙外,其余5个排列数为种,再用甲乙去插6个空位有种,不同的排法种数是种(7)书架上某层有6本书,新买3本插进去,要保持原有6本书的顺序,有种不同的插法(具体数字作答)【解析】:(8)马路上有编号为1,2,3…,9九只路灯,现要关掉其中的三盏,但不能关掉相邻的二盏或三盏,也不能关掉两端的两盏,求满足条件的关灯方案有多少种?【解析】:把此问题当作一个排对模型,在6盏亮灯的5个空隙中插入3盏不亮的灯种方法,所以满足条件的关灯方案有10种.四.元素分析法(位置分析法):某个或几个元素要排在指定位置,可先排这个或几个元素;再排其它的元素。(9)2010年广州亚运会组委会要从小张、小赵、小李、小罗、小王五名志愿者中选派四人分别从事翻译、导游、礼仪、司机四项不同工作,若其中小张和小赵只能从事前两项工作,其余三人均能从事这四项工作,则不同的选派方案共有()高☆考♂资♀源€网☆A.36种B.12种C.18种D.48种【解析】:方法一:从后两项工作出发,采取位置分析法。方法二:分两类:若小张或小赵入选,则有选法;若小张、小赵都入选,则有(3)若恰用五种颜色染色,有种染色法高☆考♂资♀源€网☆综上所知,满足题意的染色方法数为60+240+120=420种。【答案】420.十二.几何中的排列组合问题:(24)已知直线(是非零常数)与圆有公共点,且公共点的横坐标和纵坐标均为整数,那么这样的直线共有条【解析】:
圆上的整点有:12个其中关于原点对称的有4条不满则条件切线有,其中平行于坐标轴的有14条不满则条件66-4+12-14=60答案:60【练习】1、4位同学每人从甲、乙、丙3门课程中选修1门,则恰有2人选修课程甲的不同选法共有(A)12种(B)24种(C)30种(D)36种【解析】分两类:取出的1本画册,3本集邮册,此时赠送方法有种;取出的2本画册,2本集邮册,此时赠送方法有种。总的赠送方法有种。【答案】B2、正五棱柱中,不同在任何侧面且不同在任何底面的两顶点的连线称为它的对角线,那么一个正五棱柱对角线的条数共有() A.20 B.15 C.12 D.10【解析】先从5个侧面中任意选一个侧面有种选法,再从这个侧面的4个顶点中任意选一个顶点有种选法,由于不同在任何侧面且不同在任何底面的两顶点的连线称为它的对角线,所以除去这个侧面上、相邻侧面和同一底面上的共8个点,还剩下2个点,把这个点和剩下的两个点连线有种方法,但是在这样处理的过程中刚好每一条对角线重复了一次,所以最后还要乘以所以这个正五棱柱对角线的条数共有,所以选择A.3、的展开式中的常数项是(A)(B)(C)(D)【答案】C【解析】:令,于是展开式中的常数项是故选C4、已知的展开式中的系数与的展开式中的系数相等,则.【答案】解:的通项为,,∴的展开式中的系数是,的通项为,,∴的展开式中的系数是∴,.5、已知(是正整数)的展开式中,的系数小于120,则.【解析】按二项式定理展开的通项为,我们知道的系数为,即,也即,而是正整数,故只能取1。答案47、已知,则=-8.8、对任意的实数,有,则的值是(B)A.3B.6C.9D.219、设是的一个排列,把排在的左边且比小的数的个数称为的顺序数().如:在排列6,4,5,3,2,1中,5的顺序数为1,3的顺序数为0.则在1至8这八个数字构成的全排列中,同时满足8的顺序数为2,7的顺序数为3,5的顺序数为3的不同排列的种数为(C)A.48B.96C.144D.19210、若一个三位数的十位数字比个位数字和百位数字都大,则称这个数为“伞数”.现从1,2,3,4,5,6这六个数字中任取3个数,组成无重复数字的三位数,其中“伞数”有A.120个B.80个C.40个D.20个【答案】C11、现有4种不同颜色要对如图所示的四个部分进行着色,要求有公共边界的两块不能用同一种颜色,则不同的着色方法共有A.24种B.30种C.36种D.48种【答案】D12、如果一条直线与一个平面垂直,那么,称此直线与平面构成一个“正交线面对”.在一个正方体中,由两个顶点确定的直线与含有四个顶点的平面构成的“正交线面对”的个数是()A.24B.30C.36D.42【答案】C13.从8名女生4名男生中,选出3名学生组成课外小组,如果按性别比例分层抽样,则不同的抽取方法数为;【答案】11214、现有8个人排成一排照相,其中有甲、乙、丙三人不能相邻的排法有()种.(A)
(B)
(C)
(D)误解:除了甲、乙、丙三人以外的5人先排,有种排法,5人排好后产生6个空档,插入甲、乙、丙三人有种方法,这样共有种排法,选A.错因分析:误解中没有理解“甲、乙、丙三人不能相邻”的含义,得到的结果是“甲、乙、丙三人互不相邻”的情况.“甲、乙、丙三人不能相邻”是指甲、乙、丙三人不能同时相邻,但允许其中有两人相邻.正解:在8个人全排列的方法数中减去甲、乙、丙全相邻的方法数,就得到甲、乙、丙三人不相邻的方法数,即,故选B.15、高三年级的三个班到甲、乙、丙、丁四个工厂进行社会实践,其中工厂甲必须有班级去,每班去何工厂可自由选择,则不同的分配方案有().(A)16种(B)18种(C)37种(D)48种误解:甲工厂先派一个班去,有3种选派方法,剩下的2个班均有4种选择,这样共有种方案.错因分析:显然这里有重复计算.如
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 信阳师范大学《液压与气压传动1》2023-2024学年第二学期期末试卷
- 烟台汽车工程职业学院《波斯语报刊选读》2023-2024学年第二学期期末试卷
- 江西工业贸易职业技术学院《中医眼科学》2023-2024学年第一学期期末试卷
- 四川外国语大学成都学院《ERP供应链管理》2023-2024学年第二学期期末试卷
- 江苏省海安市2025届高三下第一次阶段性检测试题生物试题含解析
- 江西应用科技学院《PROE三维机械设计》2023-2024学年第二学期期末试卷
- 二零二五版美团会员服务协议
- 二零二五经营场地租赁协议书范例
- 二零二五版投资理财协议
- 二零二五版投资人入股协议书
- 项目建筑智能化工程施工招标文件模板
- 110kv线路施工方案
- 大东鞋业合同协议书
- 港口与船舶协同运营优化
- 苏州工业园区应急管理系统招聘笔试真题2023
- 用所给词的适当形式填空(专项训练)人教PEP版英语六年级上册
- NB-T42090-2016电化学储能电站监控系统技术规范
- 勉县房地产市场调研报告
- NBT 47013.2-2015 承压设备无损检测 第2部分:射线检测
- 《大学生美育》 课件 第七章 艺术美
- 2024年巴西兽医快速诊断市场机会及渠道调研报告
评论
0/150
提交评论