版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省滨州沾化区六校联考2024年中考试题猜想数学试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列手机手势解锁图案中,是轴对称图形的是()A. B. C. D.2.花园甜瓜是乐陵的特色时令水果.甜瓜一上市,水果店的小李就用3000元购进了一批甜瓜,前两天以高于进价40%的价格共卖出150kg,第三天她发现市场上甜瓜数量陡增,而自己的甜瓜卖相已不大好,于是果断地将剩余甜瓜以低于进价20%的价格全部售出,前后一共获利750元,则小李所进甜瓜的质量为()kg.A.180 B.200 C.240 D.3003.如图图形中是中心对称图形的是()A. B.C. D.4.已知:如图,在△ABC中,边AB的垂直平分线分别交BC、AB于点G、D,若△AGC的周长为31cm,AB=20cm,则△ABC的周长为()A.31cm B.41cm C.51cm D.61cm5.如图,已知,为反比例函数图象上的两点,动点在轴正半轴上运动,当线段与线段之差达到最大时,点的坐标是()A. B. C. D.6.正比例函数y=2kx的图象如图所示,则y=(k-2)x+1-k的图象大致是()A.B.C.D.7.计算的结果是()A.1 B.﹣1 C.1﹣x D.8.若|a|=﹣a,则a为()A.a是负数 B.a是正数 C.a=0 D.负数或零9.若直线y=kx+b图象如图所示,则直线y=−bx+k的图象大致是()A. B. C. D.10.如图,已知A、B两点的坐标分别为(-2,0)、(0,1),⊙C的圆心坐标为(0,-1),半径为1.若D是⊙C上的一个动点,射线AD与y轴交于点E,则△ABE面积的最大值是A.3 B. C. D.411.如图所示的两个四边形相似,则α的度数是()A.60° B.75° C.87° D.120°12.一个多边形内角和是外角和的2倍,它是()A.五边形 B.六边形 C.七边形 D.八边形二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,在四边形ABCD中,AD∥BC,AB=CD且AB与CD不平行,AD=2,∠BCD=60°,对角线CA平分∠BCD,E,F分别是底边AD,BC的中点,连接EF,点P是EF上的任意一点,连接PA,PB,则PA+PB的最小值为__.14.分解因式8x2y﹣2y=_____.15.以下两题任选一题作答:(1).下图是某商场一楼二楼之间的手扶电梯示意图,其中AB、CD分别表示一楼、二楼地面的水平,∠ABC=150°,BC的长是8m,则乘电梯次点B到点C上升的高度h是_____m.(2).一个多边形的每一个内角都是与它相邻外角的3倍,则多边形是_____边形.16.在平面直角坐标系中,点P到轴的距离为1,到轴的距离为2.写出一个符合条件的点P的坐标________________.17.如图,将边长为3的正六边形铁丝框ABCDEF变形为以点A为圆心,AB为半径的扇形(忽略铁丝的粗细).则所得扇形AFB(阴影部分)的面积为_____.18.正八边形的中心角为______度.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图1,在四边形ABCD中,AB=AD.∠B+∠ADC=180°,点E,F分别在四边形ABCD的边BC,CD上,∠EAF=∠BAD,连接EF,试猜想EF,BE,DF之间的数量关系.图1图2图3(1)思路梳理将△ABE绕点A逆时针旋转至△ADG,使AB与AD重合.由∠B+∠ADC=180°,得∠FDG=180°,即点F,D,G三点共线.易证△AFG,故EF,BE,DF之间的数量关系为;(2)类比引申如图2,在图1的条件下,若点E,F由原来的位置分别变到四边形ABCD的边CB,DC的延长线上,∠EAF=∠BAD,连接EF,试猜想EF,BE,DF之间的数量关系,并给出证明.(3)联想拓展如图3,在△ABC中,∠BAC=90°,AB=AC,点D,E均在边BC上,且∠DAE=45°.若BD=1,EC=2,则DE的长为.20.(6分)如图,在矩形ABCD中,对角线AC,BD相交于点O.画出△AOB平移后的三角形,其平移后的方向为射线AD的方向,平移的距离为AD的长.观察平移后的图形,除了矩形ABCD外,还有一种特殊的平行四边形?请证明你的结论.21.(6分)如图所示,AB是⊙O的直径,AE是弦,C是劣弧AE的中点,过C作CD⊥AB于点D,CD交AE于点F,过C作CG∥AE交BA的延长线于点G.求证:CG是⊙O的切线.求证:AF=CF.若sinG=0.6,CF=4,求GA的长.22.(8分)先化简,,其中x=.23.(8分)已知,如图直线l1的解析式为y=x+1,直线l2的解析式为y=ax+b(a≠0);这两个图象交于y轴上一点C,直线l2与x轴的交点B(2,0)(1)求a、b的值;(2)过动点Q(n,0)且垂直于x轴的直线与l1、l2分别交于点M、N都位于x轴上方时,求n的取值范围;(3)动点P从点B出发沿x轴以每秒1个单位长的速度向左移动,设移动时间为t秒,当△PAC为等腰三角形时,直接写出t的值.24.(10分)如图,直线y=﹣x+4与x轴交于点A,与y轴交于点B.抛物线y=﹣x2+bx+c经过A,B两点,与x轴的另外一个交点为C填空:b=,c=,点C的坐标为.如图1,若点P是第一象限抛物线上的点,连接OP交直线AB于点Q,设点P的横坐标为m.PQ与OQ的比值为y,求y与m的数学关系式,并求出PQ与OQ的比值的最大值.如图2,若点P是第四象限的抛物线上的一点.连接PB与AP,当∠PBA+∠CBO=45°时.求△PBA的面积.25.(10分)如图,在正方形ABCD的外部,分别以CD,AD为底作等腰Rt△CDE、等腰Rt△DAF,连接AE、CF,交点为O.(1)求证:△CDF≌△ADE;(2)若AF=1,求四边形ABCO的周长.26.(12分)如图,在△ABC中,点D是AB边的中点,点E是CD边的中点,过点C作CF∥AB交AE的延长线于点F,连接BF.求证:DB=CF;(2)如果AC=BC,试判断四边形BDCF的形状,并证明你的结论.27.(12分)某市扶贫办在精准扶贫工作中,组织30辆汽车装运花椒、核桃、甘蓝向外地销售.按计划30辆车都要装运,每辆汽车只能装运同一种产品,且必须装满,根据下表提供的信息,解答以下问题:产品名称核桃花椒甘蓝每辆汽车运载量(吨)1064每吨土特产利润(万元)0.70.80.5若装运核桃的汽车为x辆,装运甘蓝的车辆数是装运核桃车辆数的2倍多1,假设30辆车装运的三种产品的总利润为y万元.求y与x之间的函数关系式;若装花椒的汽车不超过8辆,求总利润最大时,装运各种产品的车辆数及总利润最大值.
参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、D【解题分析】
根据轴对称图形与中心对称图形的定义进行判断.【题目详解】A.既不是轴对称图形,也不是中心对称图形,所以A错误;B.既不是轴对称图形,也不是中心对称图形,所以B错误;C.是中心对称图形,不是轴对称图形,所以C错误;D.是轴对称图形,不是中心对称图形,所以D正确.【题目点拨】本题考查了轴对称图形和中心对称图形的定义,熟练掌握定义是本题解题的关键.2、B【解题分析】
根据题意去设所进乌梅的数量为,根据前后一共获利元,列出方程,求出x值即可.【题目详解】解:设小李所进甜瓜的数量为,根据题意得:,解得:,经检验是原方程的解.答:小李所进甜瓜的数量为200kg.故选:B.【题目点拨】本题考查的是分式方程的应用,解题关键在于对等量关系的理解,进而列出方程即可.3、B【解题分析】
把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形.【题目详解】解:根据中心对称图形的定义可知只有B选项是中心对称图形,故选择B.【题目点拨】本题考察了中心对称图形的含义.4、C【解题分析】∵DG是AB边的垂直平分线,∴GA=GB,△AGC的周长=AG+AC+CG=AC+BC=31cm,又AB=20cm,∴△ABC的周长=AC+BC+AB=51cm,故选C.5、D【解题分析】
求出AB的坐标,设直线AB的解析式是y=kx+b,把A、B的坐标代入求出直线AB的解析式,根据三角形的三边关系定理得出在△ABP中,|AP-BP|<AB,延长AB交x轴于P′,当P在P′点时,PA-PB=AB,此时线段AP与线段BP之差达到最大,求出直线AB于x轴的交点坐标即可.【题目详解】把,代入反比例函数,得:,,,在中,由三角形的三边关系定理得:,延长交轴于,当在点时,,即此时线段与线段之差达到最大,设直线的解析式是,把,的坐标代入得:,解得:,直线的解析式是,当时,,即,故选D.【题目点拨】本题考查了三角形的三边关系定理和用待定系数法求一次函数的解析式的应用,解此题的关键是确定P点的位置,题目比较好,但有一定的难度.6、B【解题分析】试题解析:由图象可知,正比函数y=2kx的图象经过二、四象限,∴2k<0,得k<0,∴k−2<0,1−k>0,∴函数y=(k−2)x+1−k图象经过一、二、四象限,故选B.7、B【解题分析】
根据同分母分式的加减运算法则计算可得.【题目详解】解:原式====-1,故选B.【题目点拨】本题主要考查分式的加减法,解题的关键是熟练掌握同分母分式的加减运算法则.8、D【解题分析】
根据绝对值的性质解答.【题目详解】解:当a≤0时,|a|=-a,∴|a|=-a时,a为负数或零,故选D.【题目点拨】本题考查的是绝对值的性质,①当a是正有理数时,a的绝对值是它本身a;②当a是负有理数时,a的绝对值是它的相反数-a;③当a是零时,a的绝对值是零.9、A【解题分析】
根据一次函数y=kx+b的图象可知k>1,b<1,再根据k,b的取值范围确定一次函数y=−bx+k图象在坐标平面内的位置关系,即可判断.【题目详解】解:∵一次函数y=kx+b的图象可知k>1,b<1,
∴-b>1,∴一次函数y=−bx+k的图象过一、二、三象限,与y轴的正半轴相交,故选:A.【题目点拨】本题考查了一次函数的图象与系数的关系.函数值y随x的增大而减小⇔k<1;函数值y随x的增大而增大⇔k>1;一次函数y=kx+b图象与y轴的正半轴相交⇔b>1,一次函数y=kx+b图象与y轴的负半轴相交⇔b<1,一次函数y=kx+b图象过原点⇔b=1.10、B【解题分析】试题分析:解:当射线AD与⊙C相切时,△ABE面积的最大.连接AC,∵∠AOC=∠ADC=90°,AC=AC,OC=CD,∴Rt△AOC≌Rt△ADC,∴AD=AO=2,连接CD,设EF=x,∴DE2=EF•OE,∵CF=1,∴DE=,∴△CDE∽△AOE,∴=,即=,解得x=,S△ABE===.故选B.考点:1.切线的性质;2.三角形的面积.11、C【解题分析】【分析】根据相似多边形性质:对应角相等.【题目详解】由已知可得:α的度数是:360〫-60〫-75〫-138〫=87〫故选C【题目点拨】本题考核知识点:相似多边形.解题关键点:理解相似多边形性质.12、B【解题分析】
多边形的外角和是310°,则内角和是2×310=720°.设这个多边形是n边形,内角和是(n﹣2)•180°,这样就得到一个关于n的方程,从而求出边数n的值.【题目详解】设这个多边形是n边形,根据题意得:(n﹣2)×180°=2×310°解得:n=1.故选B.【题目点拨】本题考查了多边形的内角与外角,熟记内角和公式和外角和定理并列出方程是解题的关键.根据多边形的内角和定理,求边数的问题就可以转化为解方程的问题来解决.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、2【解题分析】
将PA+PB转化为PA+PC的值即可求出最小值.【题目详解】解:E,F分别是底边AD,BC的中点,四边形ABCD是等腰梯形,B点关于EF的对称点C点,AC即为PA+PB的最小值,∠BCD=,对角线AC平分∠BCD,∠ABC=,ZBCA=,∠BAC=,AD=2,PA+PB的最小值=.故答案为:.【题目点拨】求PA+PB的最小值,PA+PB不能直接求,可考虑转化PA+PC的值,从而找出其最小值求解.14、2y(2x+1)(2x﹣1)【解题分析】
首先提取公因式2y,再利用平方差公式分解因式得出答案.【题目详解】8x2y-2y=2y(4x2-1)=2y(2x+1)(2x-1).故答案为2y(2x+1)(2x-1).【题目点拨】此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.15、48【解题分析】
(1)先求出斜边的坡角为30°,再利用含30°的直角三角形即可求解;(2)设这个多边形边上为n,则内角和为(n-2)×180°,外角度数为故可列出方程求解.【题目详解】(1)∵∠ABC=150°,∴斜面BC的坡角为30°,∴h==4m(2)设这个多边形边上为n,则内角和为(n-2)×180°,外角度数为依题意得解得n=8故为八边形.【题目点拨】此题主要考查含30°的直角三角形与多边形的内角和计算,解题的关键是熟知含30°的直角三角形的性质与多边形的内角和公式.16、(写出一个即可)【解题分析】【分析】根据点到x轴的距离即点的纵坐标的绝对值,点到y轴的距离即点的横坐标的绝对值,进行求解即可.【题目详解】设P(x,y),根据题意,得|x|=2,|y|=1,即x=±2,y=±1,则点P的坐标有(2,1),(2,-1),(-2,1),(2,-1),故答案为:(2,1),(2,-1),(-2,1),(2,-1)(写出一个即可).【题目点拨】本题考查了点的坐标和点到坐标轴的距离之间的关系.熟知点到x轴的距离即点的纵坐标的绝对值,点到y轴的距离即点的横坐标的绝对值是解题的关键.17、1【解题分析】
解:∵正六边形ABCDEF的边长为3,∴AB=BC=CD=DE=EF=FA=3,∴弧BAF的长=3×6﹣3﹣3═12,∴扇形AFB(阴影部分)的面积=×12×3=1.故答案为1.【题目点拨】本题考查正多边形和圆;扇形面积的计算.18、45°【解题分析】
运用正n边形的中心角的计算公式计算即可.【题目详解】解:由正n边形的中心角的计算公式可得其中心角为,故答案为45°.【题目点拨】本题考查了正n边形中心角的计算.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、(1)△AFE.EF=BE+DF.(2)BF=DF-BE,理由见解析;(3)【解题分析】试题分析:(1)先根据旋转得:计算即点共线,再根据SAS证明△AFE≌△AFG,得EF=FG,可得结论EF=DF+DG=DF+AE;
(2)如图2,同理作辅助线:把△ABE绕点A逆时针旋转至△ADG,证明△EAF≌△GAF,得EF=FG,所以EF=DF−DG=DF−BE;
(3)如图3,同理作辅助线:把△ABD绕点A逆时针旋转至△ACG,证明△AED≌△AEG,得,先由勾股定理求的长,从而得结论.试题解析:(1)思路梳理:如图1,把△ABE绕点A逆时针旋转至△ADG,可使AB与AD重合,即AB=AD,由旋转得:∠ADG=∠A=,BE=DG,∠DAG=∠BAE,AE=AG,∴∠FDG=∠ADF+∠ADG=+=,即点F.D.
G共线,∵四边形ABCD为矩形,∴∠BAD=,∵∠EAF=,∴∴∴在△AFE和△AFG中,∵∴△AFE≌△AFG(SAS),∴EF=FG,∴EF=DF+DG=DF+AE;故答案为:△AFE,EF=DF+AE;(2)类比引申:如图2,EF=DF−BE,理由是:把△ABE绕点A逆时针旋转至△ADG,可使AB与AD重合,则G在DC上,由旋转得:BE=DG,∠DAG=∠BAE,AE=AG,∵∠BAD=,∴∠BAE+∠BAG=,∵∠EAF=,∴∠FAG=−=,∴∠EAF=∠FAG=,在△EAF和△GAF中,∵∴△EAF≌△GAF(SAS),∴EF=FG,∴EF=DF−DG=DF−BE;(3)联想拓展:如图3,把△ABD绕点A逆时针旋转至△ACG,可使AB与AC重合,连接EG,由旋转得:AD=AG,∠BAD=∠CAG,BD=CG,∵∠BAC=,AB=AC,∴∠B=∠ACB=,∴∠ACG=∠B=,∴∠BCG=∠ACB+∠ACG=+=,∵EC=2,CG=BD=1,由勾股定理得:∵∠BAD=∠CAG,∠BAC=,∴∠DAG=,∵∠BAD+∠EAC=,∴∠CAG+∠EAC==∠EAG,∴∠DAE=,∴∠DAE=∠EAG=,∵AE=AE,∴△AED≌△AEG,∴20、(1)如图所示见解析;(2)四边形OCED是菱形.理由见解析.【解题分析】
(1)根据图形平移的性质画出平移后的△DEC即可;
(2)根据图形平移的性质得出AC∥DE,OA=DE,故四边形OCED是平行四边形,再由矩形的性质可知OA=OB,故DE=CE,由此可得出结论.【题目详解】(1)如图所示;(2)四边形OCED是菱形.理由:∵△DEC由△AOB平移而成,∴AC∥DE,BD∥CE,OA=DE,OB=CE,∴四边形OCED是平行四边形.∵四边形ABCD是矩形,∴OA=OB,∴DE=CE,∴四边形OCED是菱形.【题目点拨】本题考查了作图与矩形的性质,解题的关键是熟练的掌握矩形的性质与根据题意作图.21、(1)见解析;(2)见解析;(3)AG=1.【解题分析】
(1)利用垂径定理、平行的性质,得出OC⊥CG,得证CG是⊙O的切线.(2)利用直径所对圆周角为和垂直的条件得出∠2=∠B,再根据等弧所对的圆周角相等得出∠1=∠B,进而证得∠1=∠2,得证AF=CF.(3)根据直角三角形的性质,求出AD的长度,再利用平行的性质计算出结果.【题目详解】(1)证明:连结OC,如图,∵C是劣弧AE的中点,∴OC⊥AE,∵CG∥AE,∴CG⊥OC,∴CG是⊙O的切线;(2)证明:连结AC、BC,∵AB是⊙O的直径,∴∠ACB=90°,∴∠2+∠BCD=90°,而CD⊥AB,∴∠B+∠BCD=90°,∴∠B=∠2,∵C是劣弧AE的中点,∴,∴∠1=∠B,∴∠1=∠2,∴AF=CF;(3)解:∵CG∥AE,∴∠FAD=∠G,∵sinG=0.6,∴sin∠FAD==0.6,∵∠CDA=90°,AF=CF=4,∴DF=2.4,∴AD=3.2,∴CD=CF+DF=6.4,∵AF∥CG,∴,∴∴DG=,∴AG=DG﹣AD=1.【题目点拨】本题主要考查与圆有关的位置关系和圆中的计算问题,掌握切线的判定定理以及解直角三角形是解题的关键.22、【解题分析】
根据分式的化简方法先通分再约分,然后带入求值.【题目详解】解:当时,.【题目点拨】此题重点考查学生对分式的化简的应用,掌握分式的化简方法是解题的关键.23、(1)a=﹣;(2)﹣1<n<2;(3)满足条件的时间t为1s,2s,或(3+)或(3﹣)s.【解题分析】试题分析:(1)、根据题意求出点C的坐标,然后将点C和点B的坐标代入直线解析式求出a和b的值;(2)、根据题意可知点Q在点A和点B之间,从而求出n的取值范围;(3)、本题需要分几种情况分别来进行计算,即AC=P1C,P2A=P2C和AP3=AC三种情况分别进行计算得出t的值.试题解析:(1)、解:∵点C是直线l1:y=x+1与轴的交点,∴C(0,1),∵点C在直线l2上,∴b=1,∴直线l2的解析式为y=ax+1,∵点B在直线l2上,∴2a+1=0,∴a=﹣;(2)、解:由(1)知,l1的解析式为y=x+1,令y=0,∴x=﹣1,由图象知,点Q在点A,B之间,∴﹣1<n<2(3)、解:如图,∵△PAC是等腰三角形,∴①点x轴正半轴上时,当AC=P1C时,∵CO⊥x轴,∴OP1=OA=1,∴BP1=OB﹣OP1=2﹣1=1,∴1÷1=1s,②当P2A=P2C时,易知点P2与O重合,∴BP2=OB=2,∴2÷1=2s,③点P在x轴负半轴时,AP3=AC,∵A(﹣1,0),C(0,1),∴AC=,∴AP3=,∴BP3=OB+OA+AP3=3+或BP3=OB+OA﹣AP3=3﹣,∴(3+)÷1=(3+)s,或(3﹣)÷1=(3﹣)s,即:满足条件的时间t为1s,2s,或(3+)或(3﹣)s.点睛:本题主要考查的就是一次函数的性质、等腰三角形的性质和动点问题,解决这个问题的关键就是要能够根据题意进行分类讨论,从而得出答案.在解决一次函数和等腰三角形问题时,我们一定要根据等腰三角形的性质来进行分类讨论,可以利用圆规来作出图形,然后根据实际题目来求出答案.24、(3)3,2,C(﹣2,4);(2)y=﹣m2+m,PQ与OQ的比值的最大值为;(3)S△PBA=3.【解题分析】
(3)通过一次函数解析式确定A、B两点坐标,直接利用待定系数法求解即可得到b,c的值,令y=4便可得C点坐标.
(2)分别过P、Q两点向x轴作垂线,通过PQ与OQ的比值为y以及平行线分线段成比例,找到,设点P坐标为(m,-m2+m+2),Q点坐标(n,-n+2),表示出ED、OD等长度即可得y与m、n之间的关系,再次利用即可求解.
(3)求得P点坐标,利用图形割补法求解即可.【题目详解】(3)∵直线y=﹣x+2与x轴交于点A,与y轴交于点B.∴A(2,4),B(4,2).又∵抛物线过B(4,2)∴c=2.把A(2,4)代入y=﹣x2+bx+2得,4=﹣×22+2b+2,解得,b=3.∴抛物线解析式为,y=﹣x2+x+2.令﹣x2+x+2=4,解得,x=﹣2或x=2.∴C(﹣2,4).(2)如图3,分别过P、Q作PE、QD垂直于x轴交x轴于点E、D.设P(m,﹣m2+m+2),Q(n,﹣n+2),则PE=﹣m2+m+2,QD=﹣n+2.又∵=y.∴n=.又∵,即把n=代入上式得,整理得,2y=﹣m2+2m.∴y=﹣m2+m.ymax=.即PQ与OQ的比值的最大值为.(3)如图2,∵∠OBA=∠OBP+∠PBA=25°∠PBA+∠CBO=25°∴∠OBP=∠CBO此时PB过点(2,4).设直线PB解析式为,y=kx+2.把点(2,4)代入上式得,4=2k+2.解得,k=﹣2∴直线PB解析式为,y=﹣2x+2.令﹣2x+2=﹣x2+x+2整理得,x2﹣3x=4.解得,x=4(舍去)或x=5.当x=5时,﹣2x+2=﹣2×5+2=﹣7∴P(5,﹣7).过P作PH⊥cy轴于点H.则S四边形OHPA=(OA+PH)•OH=(2+5)×7=24.S△OAB=OA•OB=×2×2=7.S△BHP=PH•BH=×5×3=35.∴S△PBA=S四边形OHPA+S△OAB﹣S△BHP=24+7﹣35=3.【题目点拨】本题考查了函数图象与坐标轴交点坐标的确定,以及利用待定系数法求解抛物线解析式常数的方法,再者考查了利用数形结合的思想将图形线段长度的比化为坐标轴上点之间的线段长度比的思维能力.还考查了运用图形割补法求解坐标系内图形的面积的方法.25、(1)详见解析;(2)【解题分析】
(1)根据正方形的性质和等腰直角三角形的性质以及全等三角形的判定得出△CDF≌△ADE;(2)连接AC,利用正方形的性质和四边形周长解答即可.【题目
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年低洼地出租合同范本
- 2024年出售工地加工棚合同范本
- 2024年承接造型树基地合同范本
- 2024年骨科年终总结
- 伤口导管的护理
- 2024年银行消防培训
- 劳动节安全培训
- 医疗政策宣传
- 全面预算培训
- 2024简易车辆租用合同(无租金)
- 2024年秋一年级上册8升国旗 公开课一等奖创新教学设计(表格式2课时)
- 【课件】纪念与象征-空间中的实体艺术+课件-高中美术人美版(2019)美术鉴赏
- 2024年广西应急厅事业单位笔试真题
- “十四五”期间推进智慧水利建设实施方案
- 七年级开学第一次家长会课件
- 台湾问题的由来课件
- DZ/T 0462.3-2023 矿产资源“三率”指标要求 第3部分:铁、锰、铬、钒、钛(正式版)
- 信息技术与高中英语教学融合的途径
- 组织行为学(山东联盟-青岛理工大学)智慧树知到期末考试答案2024年
- 复习一元一次方程省公开课金奖全国赛课一等奖微课获奖课件
- 《电力建设施工技术规范 第2部分:锅炉机组》DLT 5190.2
评论
0/150
提交评论