版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
对角互补模型对角互补模型模型讲解模型讲解【结论一】(对角互补一般情况)如图,在四边形ABCD中,∠1+∠2=180°,BA=BC,连接BD,延长DA至E,使得AE=DC,则有以下结论成立:①△BAE≌△BCD;【证明】:①证明:∵∠1+∠2=180°,∴∠BAC+∠C=180°,∴∠BAE=∠BCD在△BAE和△BCD中AE=CD∠BAE=∠BCDAB=BC∴△BAE≌△BCD(SAS).【结论二】(对角互补--含60°角)如图,在四边形ABCD中,∠1=60°,∠2=120°,BA=BC,连接BD,延长DA至E,使得AE=DC,则有以下结论成立:①△BAE≌△BCD;②△BED为等边△【结论二】(对角互补--含90°角)如图,在四边形ABCD中,∠1=90°,∠2=90°,BA=BC,连接BD,延长DA至E,使得AE=DC,则有以下结论成立:①△BAE≌△BCD;②△BED为等腰Rt△方法点拨例题演练例题演练1.如图,Rt△ABC中,∠C=90°,以斜边AB为边向外作正方形ABDE,且正方形对角线交于点O,连接OC,已知AC=,OC=,则另一直角边BC的长为.【解答】解:过点O作OM⊥CA,交CA的延长线于点M,作ON⊥BC于点N.∵四边形ABCD是正方形,∴OA=OB,∠AOB=90°,∵∠MON=∠AOB=90°,∴∠AOM=∠BON,在△AOM和△BON中,∴△OMA≌△ONB,∴OM=ON,MA=NB.∴O点在∠ACB的平分线上,∴△OCM为等腰直角三角形.∵OC=,∴CM=ON=1.∴MA=CM﹣AC=1﹣=,∴BC=CN+NB=1+=.故答案为:.2.如图,在四边形ABCD中,AB=AD,∠B+∠D=180°,E,F分别是边BC,CD上的点,且∠EAF=∠BAD,求证:EF=BE+FD.【解答】证明:延长CB至M,使BM=FD,连接AM,如图所示:∵∠ABC+∠D=180°,∠ABM+∠ABC=180°,∴∠ABM=∠D,在△ABM与△ADF中,,∴△ABM≌△ADF(SAS),∴AF=AM,∠BAM=∠DAF,∵∠EAF=∠BAD,∴∠DAF+∠BAE=∠BAD=∠FAE,∴∠BAM+∠BAE=∠EAF,即∠MAE=∠EAF,在△AME与△AFE中,,∴△AME≌△AFE(SAS),∴EF=ME,∵ME=BE+BM,∴EF=BE+FD.强化训练强化训练1.如图1,在四边形ABCD中,AB=AD,∠B=∠D=90°,E、F分别是边BC、CD上的点,且∠EAF=∠BAD.试探究图中线段BE、EF、FD之间的数量关系.(1)小王同学探究此问题的方法是:延长EB到点G,使BG=DF,连接AG,先证明△ABG≌△ADF,再证明△AEG≌△AEF,可得出结论,他的结论应是.(2)如图2,在四边形ABCD中,AB=AD,∠B+∠D=180°,E、F分别是边BC、CD上的点,且∠EAF=∠BAD,上述结论是否仍然成立,并说明理由.(3)如图3,在四边形ABCD中,AB=AD,∠B+∠ADC=180°,E、F分别是边BC、CD延长线上的点,且∠EAF=∠BAD,(1)中的结论是否仍然成立?若成立,请证明;若不成立,请写出它们之间的数量关系,并证明.【解答】解:(1)由△ABG≌△ADF,△AEG≌△AEF可知,BG=DF,EF=EG=BG+EF=DF+EF,故答案为EF=BE+FD(2)(1)中的结论EF=BE+FD仍然成立.理由:延长EB到点G,使BG=DF,连接AG.∵∠ABD+∠D=180°,∠ABD+∠ABG=180°,∴∠ABG=∠D,∴AB=AD,BG=DF,∴△ABG≌△ADF,∴∠BAG=∠DAF,AG=AF,∵∠EAF=∠BAD,∴∠BAE+∠DAF=∠BAD=∠BAE+∠BAG,∴∠EAG=∠EAF,∵AE=AE,AG=AF,∴△EAG≌△EAF,∴EG=EF,∵EG=BG+BE=DF+BE,∴EF=BE+DF.(3)结论EF=BE+FD不成立,应当是EF=BE﹣FD.证明:在BE上截取BG,使BG=DF,连接AG.∵∠B+∠ADC=180°,∠ADF+∠ADC=180°,∴∠B=∠ADF.∵AB=AD,∴△ABG≌△ADF.∴∠BAG=∠DAF,AG=AF.∴∠BAG+∠EAD=∠DAF+∠EAD=∠EAF=∠BAD.∴∠GAE=∠EAF.∵AE=AE,∴△AEG≌△AEF.∴EG=EF∵EG=BE﹣BG∴EF=BE﹣FD.2.(2020秋•西城区校级期中)已知,如图,在四边形ABCD中,BC>BA,∠A+∠C=180°,DE⊥BC,BD平分∠ABC,试说明AD=DC.【解答】证明:如图,过D作DF⊥AB,交BA的延长线于点F,∵DE⊥BC,BD平分∠ABC,∴DE=DF,∠F=∠DEC=90°,∵∠BAD+∠C=180°,且∠BAD+∠DAF=180°,∴∠DAF=∠C,在△ADF和△CDE中∴△ADF≌△CDE(AAS),∴AD=CD.3.如图,正方形ABCD的边长为6,点E是边AB上一点,点P是对角线BD上一点,且PE⊥PC.(1)求证:PC=PE;(2)若BE=2,求PB的长.【解答】证明:(1)过点P作PF⊥AB,PG⊥BC,∴∠PFB=∠PGB=∠PGC=90°,∵四边形ABCD是正方形,∴∠A=∠ABC=90°,AB=AD=BC,∴∠ABD=∠ADB=45°,四边形FBGP是矩形,∴∠FPB=90°﹣∠ABD=90°﹣45°=45°,∴∠ABD=∠FPB,∴FP=FB,∴矩形FBGP是正方形,∴PF=PG,∠FPG=90°,∴∠FPE+∠EPG=90°,∵EP⊥PC,∴∠EPC=90°,∴∠GPC+∠EPG=90°,∴∠FPE=∠GPC,在△PFE与△PGC中,,∴△PFE≌△PGC(ASA),∴PE=PC;(2)设EF=x,∵△PFE≌△PGC,∴GC=EF=x,由BE=2得:BF=x+2,由正方形FBGP得:BG=x+2,∵BC=6,∴BG+GC=6,∴(x+2)+x=6,解得:x=2,∴PF=BF=2+2=4,△PFB中,∠PFB=90°,由勾股定理得:PB2=42+42=32,∵PB>0,∴PB=.4.菱形ABCD中,∠B=60°,∠MAN=60°,射线AM交直线BC于点E,射线AN交直线CD于点F,连接EF,请解答下列问题:(1)如图1,求证:EC+FC=AC;(2)将∠MAN绕点A旋转,如图2,如图3,请直接写出线段EC,FC,AC之间的数量关系,不需要证明;(3)若S菱形ABCD=18,∠CAE=30°,则CF=3或12.【解答】解:(1)如图1所示:∵四边形ABCD为菱形,∠B=60°∴AB=BC,∠ACF=∠B=60°.又∵∠B=60°,∴△ABC为等边三角形.∴AC=BC=AB,∠BAC=60°.又∵∠MAN=60°,∴∠BAE=∠CAF.在△ABE和△ACF中,∴△ABE≌△ACF(ASA).∴BE=CF.∴EC+CF=EC+BE=BC.又∵BC=AC,∴EC+CF=AC.(2)如图2所示:AC+CF=EC.∵四边形ABCD为菱形,∠B=60°∴AB=BC,∠ACD=∠B=60°.∴∠ACF=120°.∵∠B=60°,AB=BC,∴△ABC为等边三角形.∴AC=BC=AB,∠ABC=60°.∴∠ABE=120°.∴∠ABE=∠ACF.∵∠MAN=∠BAC=60°∴∠BAE=∠CAF.在△ABE和△ACF中,∴△ABE≌△ACF(ASA).∴BE=CF.∴FC+BC=BE+BC=CE.∵BC=AC,∴FC+AC=CE.如图3所示:又∵BC=AC,∴EC+CF=AC.如图3所示:CF=AC+CE.在△ACE和△ADF中,△ACE≌△ADF(ASA).∴CE=DF.∴CF=CD+DF=CD+CE=AC+CE,即CF=AC+CE.(3)如图1所示:∵∠CAE=30°,∠CAB=60°,∴AE平分∠CAB.又∵AB=AC,∴AE⊥BC,BE=CE.∴AE=AB.∵S菱形ABCD=18,∴AB•AB=18.∴AB=6.∴BE=EC=3.∴CF=3.如图3所示:∵∠CAE=30°,∠BAC=60°,∴∠BAE=90°.又∵AB=6,∠B=60°,∴BE=12.∴CF=AC+CE=BC+CE=12.综上所述,CF=3或CF=12.故答案为:3或12.5.(1)如图1,四边形ABCD是边长为5cm的正方形,E,F分别在AD,CD边上,∠EBF=45°.为了求出△DEF的周长.小南同学的探究方法是:如图2,延长EA到H,使AH=CF,连接BH,先证△ABH≌△CBF,再证△EBH≌△EBF,得EF=EH,从而得到△DEF的周长=10cm;(2)如图3,在四边形ABCD中,AB=AD,∠BAD=100°,∠B=∠ADC=90°.E,F分别是线段BC,CD上的点.且∠EAF=50°.探究图中线段EF,BE,FD之间的数量关系;(3)如图4,若在四边形ABCD中,AB=AD,∠B+∠D=180°,E,F分别是线段BC,CD上的点,且2∠EAF=∠BAD,(2)中的结论是否仍然成立,若成立,请证明,若不成立,请说明理由;(4)若在四边形ABCD中,AB=AD,∠B+∠D=180°,点E、F分别在CB、DC的延长线上,且2∠EAF=∠BAD,请画出图形,并直接写出线段EF、BE、FD之间的数量关系.【解答】解:(1)如图1,延长EA到H,使AH=CF,连接BH,∵四边形ABCD是正方形,∴AB=BC=AD=CD=5cm,∠BAD=∠BCD=90°,∴∠BAH=∠BCF=90°,又∵AH=CF,AB=BC,∴△ABH≌△CBF(SAS),∴BH=BF,∠ABH=∠CBF,∵∠EBF=45°,∴∠CBF+∠ABE=45°=∠HBA+∠ABE=∠EBF,∴∠EBH=∠EBF,又∵BH=BF,BE=BE,∴△EBH≌△EBF(SAS),∴EF=EH,∴EF=EH=AE+CF,∴△DEF的周长=DE+DF+EF=DE+DF+AE+CF=AD+CD=10(cm).故答案为:10.(2)EF=BE+DF.证明:如图2所示,延长FD到点G.使DG=BE.连接AG,在△ABE和△ADG中,,∴△ABE≌△ADG(SAS),∴AE=AG,∠BAE=∠DAG,∵∠BAD=100°,∠EAF=50°,∴∠BAE+∠FAD=∠DAG+∠FAD=50°,∴∠EAF=∠FAG=50°,在△EAF和△GAF中,,∴△EAF≌△GAF(SAS),∴EF=FG=DF+DG,∴EF=BE+DF;(3)成立.证明:如图3,延长EB到G,使BG=DF,连接AG.∵∠ABC+∠D=180°,∠ABG+∠ABC=180°,∴∠ABG=∠D,∵在△ABG与△ADF中,,∴△ABG≌△ADF(SAS),∴AG=AF,∠BAG=∠DAF,∵2∠EAF=∠BAD,∴∠DAF+∠BAE=∠BAG+∠BAE=∠BAD=∠EAF,∴∠GAE=∠EAF,又AE=AE,∴△AEG≌△AEF(SAS),∴EG=EF,∵EG=BE+BG,∴EF=BE+FD;(4)EF=BE﹣FD,理由如下:在BC上截取BH=DF,∵∠B+∠ADC=180°,∠ADC+∠ADF=180°,∴∠B=∠ADF,且AB=AD,BH=DF,∴△ABH≌△ADF(SAS),∴∠BAH=∠DAF,AH=AF,∵∠EAF=∠BAD,∴∠DAE+∠BAH=∠BAD,∴∠HAE=∠BAD=∠EAF,且AE=AE,AH=AF,∴△HAE≌△FAE(SAS),∴HE=EF,∴EF=HE=BE﹣BH=BE﹣DF.1.(2018•阜新中考真题)如图,在△ABC中,∠BAC=90°,AB=AC,AD⊥BC于点D.(1)如图1,点E,F在AB,AC上,且∠EDF=90°.求证:BE=AF;(2)点M,N分别在直线AD,AC上,且∠BMN=90°.①如图2,当点M在AD的延长线上时,求证:AB+AN=AM;②当点M在点A,D之间,且∠AMN=30°时,已知AB=2,直接写出线段AM的长.【解答】解:(1)∵∠BAC=90°,AB=AC,∴∠B=∠C=45°,∵AD⊥BC,∴BD=CD,∠ADB=90°,∠BAD=∠CAD=45°,∴∠CAD=∠B,AD=BD,∵∠EDF=∠ADB=90°,∴∠BDE=∠ADF,∴△BDE≌△ADF(ASA),∴BE=AF;(2)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 课题申报参考:近红外光刺激辅助执行功能训练改善儿童发展性阅读障碍机制研究
- 2025年度个人与公司间艺术品收藏与交易合同4篇
- 2025年度个人房产买卖资金监管服务合同4篇
- 二零二五年度车位锁维修与保养服务合同3篇
- 二零二五年度体育用品买卖合同附带运动损伤防护与售后服务4篇
- 2025年物流园区车位租赁与仓储管理合作协议4篇
- 2025年度智能挖掘机销售与远程控制技术支持合同4篇
- 二零二五山地旅游交通服务租赁协议3篇
- 二零二五年度宠物寄养中心租赁合同规范4篇
- 二零二五年度工业用地租赁合同示范文本
- 2024年山东省泰安市高考物理一模试卷(含详细答案解析)
- 护理指南手术器械台摆放
- 肿瘤患者管理
- 2025年中国航空部附件维修行业市场竞争格局、行业政策及需求规模预测报告
- 2025春夏运动户外行业趋势白皮书
- 《法制宣传之盗窃罪》课件
- 通信工程单位劳动合同
- 2024年医疗器械经营质量管理规范培训课件
- 零部件测绘与 CAD成图技术(中职组)冲压机任务书
- 2024年计算机二级WPS考试题库380题(含答案)
- 高低压配电柜产品营销计划书
评论
0/150
提交评论