(小白高考)新高考数学(零基础)一轮复习教案3.2《导数与函数的单调性、极值与最值及大题常考的4类题型》 (原卷版)_第1页
(小白高考)新高考数学(零基础)一轮复习教案3.2《导数与函数的单调性、极值与最值及大题常考的4类题型》 (原卷版)_第2页
(小白高考)新高考数学(零基础)一轮复习教案3.2《导数与函数的单调性、极值与最值及大题常考的4类题型》 (原卷版)_第3页
(小白高考)新高考数学(零基础)一轮复习教案3.2《导数与函数的单调性、极值与最值及大题常考的4类题型》 (原卷版)_第4页
(小白高考)新高考数学(零基础)一轮复习教案3.2《导数与函数的单调性、极值与最值及大题常考的4类题型》 (原卷版)_第5页
已阅读5页,还剩5页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

页第二节导数在研究函数中的应用第1课时系统知识牢基础——导数与函数的单调性、极值与最值知识点一利用导数研究函数的单调性1.函数f(x)在某个区间(a,b)内的单调性与f′(x)的关系(1)若f′(x)>0,则f(x)在这个区间上单调递增.(2)若f′(x)<0,则f(x)在这个区间上单调递减.(3)若f′(x)=0,则f(x)在这个区间上是常数.2.利用导数判断函数单调性的一般步骤(1)求f′(x).(2)在定义域内解不等式f′(x)>0或f′(x)<0.(3)根据结果确定f(x)的单调性及单调区间.[提醒](1)讨论函数的单调性或求函数的单调区间的实质是解不等式,求解时,要坚持“定义域优先”原则.(2)有相同单调性的单调区间不止一个时,用“,”隔开或用“和”连接,不能用“∪”连接.(3)若函数y=f(x)在区间(a,b)上单调递增,则f′(x)≥0,且在(a,b)的任意子区间,等号不恒成立;若函数y=f(x)在区间(a,b)上单调递减,则f′(x)≤0,且在(a,b)的任意子区间,等号不恒成立.[重温经典]1.(多选)如图是函数y=f(x)的导函数y=f′(x)的图象,则下列判断正确的是()A.在区间(﹣2,1)上f(x)是增函数B.在区间(2,3)上f(x)是减函数C.在区间(4,5)上f(x)是增函数D.当x=2时,f(x)取到极大值2.函数y=x4﹣2x2+5的单调递减区间为()A.(﹣∞,﹣1)和(0,1)B.[﹣1,0]和[1,+∞)C.[﹣1,1]D.(﹣∞,﹣1]和[1,+∞)3.若函数y=x3+x2+mx+1是R上的单调函数,则实数m的取值范围是()A.(eq\f(1,3),+∞)B.(﹣∞,eq\f(1,3)]C.[eq\f(1,3),+∞)D.(﹣∞,eq\f(1,3))4.若函数f(x)=kx﹣lnx在区间(1,+∞)单调递增,则k的取值范围是()A.(﹣∞,﹣2]B.(﹣∞,﹣1]C.[2,+∞)D.[1,+∞)5.若函数y=﹣eq\f(4,3)x3+ax有三个单调区间,则a的取值范围是________.知识点二利用导数研究函数的极值1.函数的极大值在包含x0的一个区间(a,b)内,函数y=f(x)在任何一点的函数值都小于x0点的函数值,称点x0为函数y=f(x)的极大值点,其函数值f(x0)为函数的极大值.2.函数的极小值在包含x0的一个区间(a,b)内,函数y=f(x)在任何一点的函数值都大于x0点的函数值,称点x0为函数y=f(x)的极小值点,其函数值f(x0)为函数的极小值.极大值与极小值统称为极值,极大值点与极小值点统称为极值点.[提醒](1)极值点不是点,若函数f(x)在x1处取得极大值,则x1为极大值点,极大值为f(x1);在x2处取得极小值,则x2为极小值点,极小值为f(x2).极大值与极小值之间无确定的大小关系.(2)极值一定在区间内部取得,有极值的函数一定不是单调函数.(3)f′(x0)=0是x0为f(x)的极值点的必要而非充分条件.例如,f(x)=x3,f′(0)=0,但x=0不是极值点.[重温经典]1.(多选)下列函数中,存在极值点的是()A.y=x﹣eq\f(1,x)B.y=2|x|C.y=﹣2x3﹣xD.y=xlnx2.如图是f(x)的导函数f′(x)的图象,则f(x)的极小值点的个数为()A.1B.2C.3D.43.若函数f(x)=x3+ax2+3x﹣9在x=﹣3时取得极值,则a的值为()A.2B.3C.4D.54.若x=﹣2是函数f(x)=(x2+ax﹣1)ex的极值点,则f′(﹣2)=________,f(x)的极小值为________.5.设x1,x2是函数f(x)=x3﹣2ax2+a2x的两个极值点,若x1<2<x2,则实数a的取值范围是_______.知识点三函数的最值1.在闭区间[a,b]上连续的函数f(x)在[a,b]上必有最大值与最小值.2.若函数f(x)在[a,b]上单调递增,则f(a)为函数的最小值,f(b)为函数的最大值;若函数f(x)在[a,b]上单调递减,则f(a)为函数的最大值,f(b)为函数的最小值.[提醒]求函数最值时,易误认为极值点就是最值点,不通过比较就下结论,这种做法是错误的.[重温经典]1.函数f(x)=lnx﹣x在区间(0,e]上的最大值为()A.1﹣eB.﹣1C.﹣eD.02.函数f(x)=x4﹣4x(|x|<1)()A.有最大值,无最小值B.有最大值,也有最小值C.无最大值,有最小值D.既无最大值,也无最小值3.函数y=x+2cosx在区间[0,eq\f(π,2)]上的最大值是________.4.已知f(x)=﹣x2+mx+1在区间[﹣2,﹣1]上的最大值就是函数f(x)的极大值,则m的取值范围是________.5.函数f(x)=xe﹣x,x∈[0,4]的最小值为________.6.已知函数f(x)=2sinx+sin2x,则f(x)的最小值是________.第2课时精研题型明考向——“函数与导数”大题常考的4类题型一、真题集中研究——明考情1.已知函数f(x)=aex﹣1﹣lnx+lna.(1)当a=e时,求曲线y=f(x)在点(1,f(1))处的切线与两坐标轴围成的三角形的面积;(2)若f(x)≥1,求a的取值范围.2.已知函数f(x)=ex+ax2﹣x.(1)当a=1时,讨论f(x)的单调性;(2)当x≥0时,f(x)≥eq\f(1,2)x3+1,求a的取值范围.[把脉考情]常规角度1.单调性问题.主要考查利用导数求函数的单调区间或讨论函数的单调性以及由函数的单调性求参数范围.2.函数零点问题.主要考查判断函数的零点个数以及由函数零点或方程的根求参数的值或取值范围.3.不等式问题.主要考查不等式的证明、不等式恒成立或不等式存在性问题、由不等式成立求参数问题等创新角度函数与导数与放缩法相结合证明不等式、与三角函数相结合考查函数的性质问题考法(三)由函数的单调性求参数[例3]已知函数f(x)=lnx,g(x)=eq\f(1,2)ax2+2x.(1)若函数h(x)=f(x)﹣g(x)存在单调递减区间,求a的取值范围;(2)若函数h(x)=f(x)﹣g(x)在[1,4]上单调递减,求a的取值范围.[方法技巧]由函数的单调性求参数的取值范围的方法(1)由可导函数f(x)在D上单调递增(或递减)求参数范围问题,可转化为f′(x)≥0(或f′(x)≤0)对x∈D恒成立问题,再参变分离,转化为求最值问题,要注意“=”是否取到.(2)可导函数在某一区间上存在单调区间,实际上就是f′(x)>0(或f′(x)<0)在该区间上存在解集,这样就把函数的单调性问题转化成不等式问题.(3)若已知f(x)在区间I上的单调性,区间I中含有参数时,可先求出f(x)的单调区间,令I是其单调区间的子集,从而可求出参数的取值范围.[针对训练]3.已知函数f(x)=eq\f(3x,a)﹣2x2+lnx在区间[1,2]上为单调函数,求a的取值范围.题型二利用导数研究函数的极值、最值此类题型一般是通过计算函数的导函数,确定函数的单调性,进而求得函数的极值与最值.破解此类题的关键点:(1)分析函数的单调性.结合题意,先求导函数,再确定何时f′(x)>0,何时f′(x)<0,据此可得函数的单调性.(2)确定函数的极值、最值.可以以所得的函数单调性为切入点,在草稿纸上先画出函数的大致图象,以便迅速确定函数的极值情况(若在某点处左增右减,则函数有极大值;若在某点处左减右增,则函数有极小值)以及最值情况(函数图象的最高点的纵坐标为最大值,最低点的纵坐标为最小值),真正体现“数形结合”的灵活运用.考法(一)函数的极值问题[例1]已知函数f(x)=eq\f(1-a,2)x2+ax﹣lnx(a∈R).(1)当a=1时,求函数f(x)的极值;(2)讨论函数f(x)在定义域内极值点的个数.[方法技巧]求解函数极值点问题的注意点(1)导数为零的点不一定是极值点.在求得导函数的零点后,要利用导函数零点左右的导函数符号来确定极值点.(2)对于求解析式中含有参数的函数极值问题,一般要对方程f′(x)=0的根的情况进行讨论,分两个层次讨论.第一层次,讨论在定义域内是否有根;第二层次,在有根的条件下,再讨论根的大小.(3)对于涉及极值点的不等式证明问题,一般要进一步构造函数并借助导数研究函数的单调性,进而借助不等式去解决.[针对训练]1.已知函数f(x)=lnx.(1)求f(x)图象的过点P(0,﹣1)的切线方程;(2)若函数g(x)=f(x)﹣mx+eq\f(m,x)存在两个极值点x1,x2,求m的取值范围.考法(二)函数的最值问题[例2]已知函数f(x)=eq\f(lnx,x)﹣1.(1)求函数f(x)的单调区间;(2)设m>0,求函数f(x)在区间[m,2m]上的最大值.[方法技巧]求函数f(x)在[a,b]上的最值的方法(1)若函数在区间[a,b]上单调递增或递减,则f(a)与f(b)一个为最大值,一个为最小值;(2)若函数在区间[a,b]内有极值,则要先求出函数在[a,b]上的极值,再与f(a),f(b)比较,最大的是最大值,最小的是最小值;可列表完成;(3)函数f(x)在区间(a,b)上有唯一一个极值点,这个极值点就是最大(或最小)值点,此结论在导数的实际应用中经常用到.[提醒]求函数在无穷区间(或开区间)上的最值,不仅要研究其极值情况,还要研究其单调性,并通过单调性和极值情况,画出函数的大致图象,然后借助图象观察得到函数的最值.[针对训练]已知函数f(x)=excosx﹣x.(1)求曲线y=f(x)在点(0,f(0))处的切线方程;(2)求函数f(x)在区间[0,eq\f(π,2)]上的最大值和最小值.题型三利用导数研究函数的零点或方程根利用导数研究函数的零点或方程的根的问题,是高考中的一类重要问题.这类问题的求解,常常利用导数研究函数的单调性、极值或最值,并建立不等式(组)或方程(组).破解此类题的关键点:(1)利用导数讨论函数的单调性、极值或最值.对一般函数,可以直接求导并讨论函数的单调性、极值或最值;对较为复杂的函数,可以先构造几个函数,并分别借助导数讨论这几个函数的单调性、极值或最值.(2)讨论零点的相关问题.由(1)可以建立函数之间的相互关系,进而确定函数的零点或方程的根的情况;也可以根据函数的零点或方程的根的情况建立关于相关参数的不等式(组)或方程(组).[典例]设函数f(x)=x3+bx+c,曲线y=f(x)在点(eq\f(1,2),f(eq\f(1,2)))处的切线与y轴垂直.(1)求b;(2)若f(x)有一个绝对值不大于1的零点,证明:f(x)所有零点的绝对值都不大于1.[方法技巧]求解涉及函数零点或方程根的问题的注意点(1)利用函数零点存在性定理求解.(2)分离参数a后转化为函数的值域(最值)问题求解,如果涉及多个零点,还需考虑函数的图象与直线y=a的交点个数.(3)转化为两个熟悉的函数的图象的上、下位置关系问题,从而构建不等式求解.[针对训练]已知函数f(x)=ex﹣a(x+2).(1)当a=1时,讨论f(x)的单调性;(2)若f(x)有两个零点,求a的取值范围.eq

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论