专题1.4 四边形中的四大最值模型(北师大版)(原卷版)_第1页
专题1.4 四边形中的四大最值模型(北师大版)(原卷版)_第2页
专题1.4 四边形中的四大最值模型(北师大版)(原卷版)_第3页
专题1.4 四边形中的四大最值模型(北师大版)(原卷版)_第4页
专题1.4 四边形中的四大最值模型(北师大版)(原卷版)_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

专题1.4四边形中的四大最值模型【北师大版】考卷信息:本套训练卷共30题,题型针对性较高,覆盖面广,选题有深度,可加强学生对四边形中的四大最值模型的理解!【题型1两定一动型】1.(2023春·山东泰安·九年级统考期末)如图,菱形ABCD的边长为4,且∠DAB=60°,E是BC的中点,P为BD上一点且△PCE的周长最小,则△PCE的周长的最小值为(

A.27+2 B.7+1 C.22.(2023春·山东滨州·九年级统考期末)如图,菱形ABCD的边长为4,∠DAB=60°,E为BC的中点,在对角线AC上存在一点P,使△PBE的周长最小,则△PBE的周长的最小值为(

)A.23 B.4 C.23+23.(2023春·湖南湘潭·九年级统考期末)如图,长方形OABC,是一张放在平面直角坐标系中的长方形纸片,O为原点,点A在x轴上,点C在y轴上,OA=10,OC=6,在AB上取一点M使得△CBM沿CM翻折后,点B落在x轴上,记作B′点,(1)求B(2)求折痕CM所在直线的表达式;(3)求折痕CM上是否存在一点P,使PO+PB'4.(2023春·河北邯郸·九年级统考期末)如图所示,在平面直角坐标系中,已知一次函数y=12x+1的图象与x轴,y轴分别交于A,B两点,以AB(1)求正方形ABCD的面积;(2)求点C和点D的坐标;(3)在x轴上是否存在点M,使△MDB的周长最小?若存在,请求出点M的坐标;若不存在,请说明理由.5.(2023春·山东潍坊·九年级统考期末)如图①,四边形ABCD是边长为4的正方形,M是正方形对角线BD(不含B、D两个端点)上任意一点,将△BAM绕点B逆时针旋转60°得到△BEN,连接EA、MN;P是AD的中点,连接PM.(1)AM+PM的最小值等于;(2)求证:△BNM是等边三角形;(3)如图②,以B为坐标原点建立平面直角坐标系,若点M使得AM+BM+CM的值最小,求M点的坐标.6.(2023春·全国·九年级期中)如图,四边形ABCD是正方形,△ABE是等边三角形,M为对角线BD(不含B点)上任意一点,将BM绕点B逆时针旋转60°得到BN,连接EN、AM、CM.(1)求证:△AMB≌△ENB;(2)①当M点在何处时,AM+CM的值最小;②当M点在何处时,AM+BM+CM的值最小,并说明理由;(3)当AM+BM+CM的最小值为23+2时,求正方形的边长.7.(2023春·广东深圳·九年级校联考期中)长方形纸片OABC中,AB=10cm,BC=6cm,把这张长方形纸片OABC如图放置在平面直角坐标系中,在边OA上取一点E,将△ABE沿BE折叠,使点A恰好落在OC边上的点F处.(1)求点E、F的坐标;(2)在AB上找一点P,使PE+PF最小,求点P坐标;(3)在(2)的条件下,点Q(x,y)是直线PF上一个动点,设△OCQ的面积为S,求S与x的函数关系式.8.(2023·四川广安·九年级校联考期中)如图,正方形ABCD的边长为2,M、N分别为AB、AD的中点,在对角线BD上找一点P,使△MNP的周长最小,则此时PM+PN=.【题型2两动一定型】1.(2023春·浙江杭州·九年级统考期中)如图,四边形ABCD中,∠BAD=110°,∠B=∠D=90°,在BC、CD上分别找一点M、N,使△AMN周长最小,此时∠MAN的度数为(

)A.30° B.40° C.50° D.45°2.(2023春·广东广州·九年级广州市第四十一中学统考期中)如图,菱形ABCD的边长为2cm,∠A=120°,点E是BC边上的动点,点P是对角线BD上的动点,若使PC+PEA.5 B.2 C.32 D.3.(2023春·甘肃兰州·九年级统考期中)如图正方形ABCD的面积为24,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一动点P,要使PD+PE最小,则这个最小值为(

)A.3 B.23 C.26 D4.(2023春·浙江宁波·九年级宁波市第十五中学校考期中)如图,矩形ABCD中,AB=4,BC=3,若在AC,AB上各取一点M,N,使BM+MN的值最小,求这个最小值(

)A.23 B.21195 C.25.(2023春·广东湛江·九年级湛江市第二中学校考期中)如图1,矩形OABC摆放在平面直角坐标系中,点A在x轴上,点C在y轴上,OA=3,OC=2,过点A的直线交矩形OABC的边BC于点P,且点P不与点B、C重合,过点P作∠CPD=∠APB,PD交x轴于点D,交y轴于点E.(1)若△PAB为等腰直角三角形.①求直线AP的函数解析式;②在x轴上另有一点G的坐标为2,0,请在直线AP和y轴上分别找一点M、N,使△GMN的周长最小,并求出(2)如图2,过点E作EF∥AP交x轴于点F,若以A、P、F、E为顶点的四边形是平行四边形,求直线6.(2023春·广东广州·九年级中山大学附属中学校考期末)如图,在四边形ABCD中,∠B=∠D=90°,E,F分别是BC,CD上的点,连接AE,(1)如图①,AB=AD,∠BAD=120°,∠EAF=60°.求证:EF=BE+DF;(2)如图②,∠BAD=120°,△AEF周长何时最小,作出图形,并直接写出∠AEF+∠AFE=______°(3)如图③,若四边形ABCD为正方形,点E、F分别BC,CD上,且∠EAF=45°,若BE=3,DF=2,请求出线段EF的长度.7.(2023春·陕西西安·九年级统考期末)探究:(1)如图,P、Q为△ABC的边AB、AC上的两定点,在BC上求作一点M,使△PQM的周长最短.(不写作法)(2)如图,矩形ABCD中,AB=6,AD=8,E、F分别为边AB、AD的中点,点M、N分别为BC、CD上的动点,求四边形EFNM周长的最小值.(3)如图,正方形ABCD的边长为2,点O为AB边中点,在边AD、CD、BC上分别确定点M、N、P.使得四边形OMNP周长最小,并求出最小值.【题型3两定两动型】1.(2023春·湖北武汉·九年级校考阶段练习)如图,∠MON=30°,OA=2,OD=8,线段BC在射线ON上滑动,BC=23,则四边形ABCD周长的最小值是2.(2023春·江苏扬州·九年级校考期中)如图,在长方形纸片ABCD中,AB=4,AD=12,将长方形纸片折叠,使点C落在AD边的点M处,折痕为PE,此时PD=3.(1)求MP的值;(2)在AB边上是否存在一个动点F,且不与点A、B重合,使△MEF的周长最小.如果存在求出△MEF的周长最小值:如果不存在,请说明理由;(3)若点G,Q是AB边上的两个动点,且不与点A,B重合,GQ=1.当四边形MEQG的周长最小时,其周长的最小值是______.3.(2023春·天津·九年级统考期末)如图1,以矩形OABC的顶点O为原点,OA所在的直线为x轴,OC所在的直线为y轴,建立平面直角坐标系,已知OA=3,OC=2,点E是AB的中点,在OA上取一点D,将△BDA沿BD翻折,使点A落在BC边上的点F处.

(1)直接写出点E、F的坐标;(2)如图2,若点P是线段DA上的一个动点,过P作PH⊥DB于H点,设OP的长为x,△DPH的面积为S,试用关于x的代数式表示S;(3)如图3,在x轴、y轴上是否分别存在点M、N,使得四边形MNFE的周长最小?如果存在,求出周长的最小值.(直接写出结果即可)4.(2023春·广东广州·九年级广州四十七中校考期中)已知矩形ABCD中,AB=3,BC=4,E为直线BC上一点.(1)如图1,当E在线段BC上,且DE=AD时,求BE的长.

(2)如图2,点E在线段BC边延长线上一点,若BD=BE,连接DE,M为DE的中点,连接AM、CM,求证:AM⊥CM.

(3)如图3,在(2)的条件下,P、Q为AD边上两个动点,且PQ=52,连接P、B、M、Q,求四边形

5.(2023春·天津滨海新·九年级校考期末)如图,在平面直角坐标系中,直线y=-34x+b分别与x轴、y轴交于点A、B,且点A为4,0

(1)填空:b=______;(2)求点D的坐标;(3)若M为x轴上的动点,N为y轴上的动点,求四边形MNDC周长的最小值.6.(2023春·江苏无锡·九年级江苏省锡山高级中学实验学校校考期中)在矩形ABCD中,AB=6,BC=12,E、F是直线AC上的两个动点,分别从A、C两点同时出发相向而行,速度均为每秒2个单位长度,运动时间为t秒(其中0≤t≤9).(1)如图1,M、N分别是AB、CD中点,当四边形EMFN是矩形时,求(2)若G、H分别从点A、C沿折线A-B-C、C-D-A运动,与E、F相同速度同时出发.①如图2,若四边形EGFH为菱形,求t的值;②如图3,作AC的垂直平分线交AD、BC于点P、Q,若四边形PGQH的面积是矩形ABCD面积的59,则t③如图4,在异于G、H所在矩形边上取P、Q,使得PD=BQ,顺次连接PGQH,请直接写出四边形PGQH周长的最小值:______.7.(2023春·福建南平·九年级统考期中)如图,在矩形ABCD中,AB=4,∠ABD=60°,G,H分别是AD,BC边上的点,且AG=CH,E,O,F分别是对角线BD上的四等分点,顺次连接G,E,H,F,G.(1)求证:四边形GEHF是平行四边形;(2)填空:①当AG=时,四边形GEHF是矩形;②当AG=时,四边形GEHF是菱形;(3)求四边形GEHF的周长的最小值.【题型4一定两动型】1.(2023春·全国·九年级专题练习)如图,在平行四边形ABCD中,对角线BD平分∠ABC,BC=8,∠ABC=45°,在对角线BD上有一动点P,边BC上有一动点Q,使PQ+PC的值最小,则这个最小值为(

)A.4 B.42 C.43 D2.(2023春·河南郑州·九年级校联考阶段练习)如图,在Rt△ABC中,∠C=90°,AC=BC=4,点D为AB的中点,点E、F分别在边AC、BC上,且∠EDF=90°,则下列说法:①AE=CF;②△DEF是等腰直角三角形;③△CEF周长的最小值是22+4;④四边形DECFA.①③④ B.①② C.②③ D.①②③④3.(2023春·河南郑州·九年级河南省实验中学校考期中)如图,在平面直角坐标系中,长方形OABC的顶点A、C分别在x轴、y轴的正半轴上,点B的坐标为(8,4),将该长方形沿OB翻折,点A的对应点为点D,OD与BC交于点E.(1)求点E的坐标;(2)点M是OB上任意一点,点N是OA上任意一点,是否存在点M、N,使得AM+MN最小?若存在,求出其最小值,若不存在,请说明理由.4.(2023春·广东汕头·九年级汕头市潮阳实验学校校考期中)如图,在平面直角坐标系中,点O是坐标原点,四边形ABCD是菱形,点A在x轴的正半轴上,点A的坐标为8,0,∠C=60°,点M在边BC上移动(不与B、C重合),点N在边AB上移动(不与A、

(1)连接OM,ON,∠MON=____________________°;(2)求△OMN周长的最小值及此时点N的坐标;(3)在(2)的结论下,若P为平面内一点,当以点O,N,A,P为顶点的四边形为平行四边形时,请直接写出点P的坐标.5.(2023春·重庆沙坪坝·九年级重庆一中校考期中)如图,在平面直角坐标系中,直线AB与x轴、y轴分别交于点A-12,0、点B0,43,C

(1)求直线AB的解析式;(2)如图1,若E为线段AB上一动点,过点E作EF⊥x轴于点F,EG⊥y轴于点G,连接FG,P为FG上一动点.当线段FG最短时,求△PCE周长的最小值;(3)在(2)的条件下,直线FG与直线AB相交于点Q,将线段CE沿射线FG方向平移12个单位长度,平移后的点C记为点C',H为直线FG上的一动点,在平面内是否存在一点N,使得以C'、H、Q、N为顶点的四边形是菱形.若存在,请直接写出点6.(2023春·重庆沙坪坝·九年级重庆一中校考阶段练习)如图1,在平面直角坐标系中有长方形OABC,点C(0,4),将长方形OABC沿AC折叠,使得点B落在点D处,CD边交x轴于点E,∠OAC=(1)求点D的坐标;(2)如图2,在直线AC以及y轴上是否分别存在点M,N,使得△EMN的周长最小?如果存在,求出△EMN周长的最小值;如果不存在,请说明理由;(3)点P为y轴上一动点,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论